Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.
A) Vì 61782 chia hết cho 2, 94656 chia hết cho 2, 76320 chia hết cho 2 nên
61782+ 94656-76320 chia hết cho 2
B) Vì 97485 chia hết cho 5, 61820 chia hết cho 5, 27465 chia hết cho 5 nên
97485-61820+27465 chia hết cho 5
( nhìn số tận cùng thì sẽ biết chia hết nhé)
\(\Leftrightarrow\orbr{\begin{cases}x-3=7\\x-3=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-4\end{cases}}\)
Vậy \(x\in\left\{-4;10\right\}\)
|x - 3| = 7
Xét 2 trường hợp:
TH1: x - 3 = 7
x = 7 + 3
x = 10
TH2: x - 3 = -7
x = -7 + 3
x = -4
Vậy: ...
X-x/3=5+2/4
3x/3-x/3=20/4+2/4
3x-x/3=22/4
2x/3=11/2
4x/6=33/6
4x=33
x=33/4
Vay...
Số đã cho | 412 | 354 | 655 | 527 | 164 |
Thêm 12 đơn vị | 424 | 366 | 667 | 539 | 176 |
Bớt 12 đơn vị | 400 | 342 | 643 | 515 | 152 |
Ta có :
Số đã cho | 412 | 354 | 655 | 527 | 164 |
Thêm 12 đơn vị | 424 | 366 | 667 | 539 | 176 |
Bớt 12 đơn vị | 400 | 342 | 643 | 515 | 152 |
A = 32010 + 52010 cmr A ⋮ 13
A = 32010 + 52010 = (33)670 + (54)502.52 = 27670 + 625502.25
27 \(\equiv\) 1 (mod 13) ⇒ 27670 \(\equiv\) 1670 (mod 13) ⇒ 27670 \(\equiv\)1 (mod 13)
625 \(\equiv\) 1(mod 13) ⇒625502 \(\equiv\) 1502(mod 13) ⇒ 625502\(\equiv\) 1(mod 13)
25 \(\equiv\) -1 (mod 13)
625502 \(\equiv\) 1 (mod 13)
Nhân vế với vế ta được: 625502.25 \(\equiv\) -1 (mod 13)
Mặt khác ta có: 27670 \(\equiv\) 1 (mod 13)
Cộng vế với vế ta được:27670 + 625502.25 \(\equiv\) 1 -1 (mod 13 )
27670 + 625502.25 \(\equiv\) 0 (mod 13)
⇒ 27670 + 625502.25 ⋮ 13
⇒ A = 32010 + 52010 = 27670 + 625502.25 ⋮ 13 (đpcm)
(x+3)(y-1) = 5
=> x+3;y-1 \(\in\) Ư(5) = {1,5}
\(\Rightarrow\hept{\begin{cases}x+3=1\\y-1=5\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=6\end{cases}}\) (loại)
\(\Rightarrow\hept{\begin{cases}x+3=5\\y-1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)
Vậy x=2 và y=2
Giải bằng phương pháp đánh giá em nhé.
+ Nếu p = 2 ta có:
2 + 8 = 10 (loại)
+ Nếu p = 3 ta có:
3 + 8 = 11 (nhận)
4.3 + 1 = 13 (nhận)
+ Nếu p = 3\(k\) + 1 ta có:
p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9 = 3(\(k+3\)) là hợp số (loại)
+ nếu p = 3\(k\) + 2 ta có:
4p + 1 = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại
Vậy p = 3 là giá trị thỏa mãn đề bài
Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3
Bài làm
87 . ( 13 - 18 ) - 13 . ( 87 + 18 )
= 87 . 13 - 87 . 18 - 13 . 87 - 13 . 18
= ( 87 . 13 - 13 . 87 ) - ( 87 . 18 + 13 . 18 )
= 0 - [ 18 . ( 87 + 13 ) ]
= 0 - ( 18 . 100 )
= 0 - 1800
= -1800
Mình làm bài cuối nhé bạn:v
\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4}+...+\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Rightarrow2+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 2+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}=2+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=3-\dfrac{1}{100}< 3\)
=> Đpcm
cảm ơn nha