K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

A = 32010 + 52010 cmr A ⋮ 13 

A = 32010 + 52010 = (33)670 + (54)502.52 = 27670 + 625502.25

27 \(\equiv\) 1 (mod 13) ⇒ 27670 \(\equiv\) 1670 (mod 13) ⇒ 27670 \(\equiv\)1 (mod 13)

625 \(\equiv\) 1(mod 13) ⇒625502 \(\equiv\) 1502(mod 13) ⇒ 625502\(\equiv\) 1(mod 13)

25        \(\equiv\) -1 (mod 13)

625502 \(\equiv\) 1 (mod 13)

Nhân vế với vế ta được: 625502.25 \(\equiv\) -1 (mod 13)

              Mặt khác ta có: 27670         \(\equiv\) 1 (mod 13)

Cộng vế với vế ta được:27670 + 625502.25 \(\equiv\) 1 -1 (mod 13 )

                                      27670 + 625502.25 \(\equiv\) 0 (mod 13)

                         ⇒         27670 + 625502.25  ⋮ 13

 ⇒ A = 32010 + 52010 = 27670 + 625502.25 ⋮ 13 (đpcm)

 

21 tháng 2 2018

\(A=2009+2009^2+2009^3+...+2009^{10}\)     (có 10 số hạng)

\(A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+...+\left(2009^9+2009^{10}\right)\) (có 5 nhóm)

\(A=2009\left(1+2009\right)+2009^3\left(1+2009\right)+...+2009^9\left(1+2009\right)\)

\(A=2009.2010+2009^3.2010+...+2009^9.2010\)

\(A=2010\left(2009+2009^3+...+2009^9\right)\)

Ta thấy: \(2010\left(2009+2009^3+...+2009^9\right)⋮2010\) (Vì \(2010⋮2010\) )

\(\Rightarrow A⋮2010\) (đpcm)

Vậy     \(A⋮2010\)

21 tháng 2 2018

A = (2009 + 20092 + 20093 + 20094 + .... + 200910

A = [(2009 + 20092) + (20093 + 20094) + ... + (20099 + 200910)]

A = [4038090 + 20092(2009 + 20092) + ... + 20098(2009 + 20092)]

A = [4038090 + 20092.4038090 ... + 20098. 4038090]  ⋮ 2010

(4038090  ⋮ 2010)

Bài làm

87 . ( 13 - 18 ) - 13 . ( 87 + 18 )

= 87 . 13 - 87 . 18 - 13 . 87 - 13 . 18

= ( 87 . 13 - 13 . 87 ) - ( 87 . 18 + 13 . 18 )

= 0 - [ 18 . ( 87 + 13 ) ]

= 0 - ( 18 . 100 )

= 0 - 1800

= -1800

26 tháng 10 2018

\(M=2+2^2+2^3+...+2^{20}\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(M=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

\(M=2\cdot15+...+2^{17}\cdot15\)

\(M=15\cdot\left(2+...+2^{17}\right)⋮15\left(đpcm\right)\)

26 tháng 10 2018

Ta có ;

 M = 2 + 22+23+....+220

M  = ( 2 + 22+23+2) + ....+ ( 217 + 218 + 219 + 220)

M = 2(1 + 2 + 22 + 23)+....+217(1 + 2 + 22 + 23 )

M = 2 . 15 + .... + 217 . 15

Vì 15 chia hết cho 15

Nên 2. 5 + ...+217 . 15

Vậy nên M chia hết cho 15

14 tháng 8 2017

Ta có : 2 + 22 + 23 + ..... + 230 

= (2 + 22 + 23) + ..... + (228 + 229 + 230)

= 2.(1 + 2 + 22) + ...... + 228(1 + 2 + 22)

= 2.7 + ..... + 228.7

= 7(2 + ..... + 228) chia hết cho 7 

14 tháng 8 2017

2+22+23+24+...+230=(2+22+23)+(24+25+26)+...+(228+229+230)

= 2(1+2+22)+24(1+2+22)+...+228(1+2+22)=

= (1+2+22)(2+24+...+228)=7.(2+24+...+228)  => Chia hết cho 7

Bạn ơi, cái ý thứ 2 hình như đáp án là 6 thì phải, còn cách thình bày mình yếu lắm,đừng hỏi

Mình nhầm, là trình bày

29 tháng 6 2018

2 mũ x1 bằng 4 mũ 212342018 bằng 2 mũ 424684036

 suy ra x=..............

12 tháng 10 2017

\(A=2+2^2+2^3+.........+2^{60}\)

\(\Rightarrow2A=2.\left(2+2^2+2^3+.......+2^{60}\right)\)

\(\Leftrightarrow2A=2^2+2^3+........+2^{60}+2^{61}\)

\(\Leftrightarrow2A-A=\left(2^2+2^3+......+2^{60}+2^{61}\right)-\left(2+2^2+2^3+........+2^{60}\right)\)

\(\Leftrightarrow1A=2^{61}-2\)

Mà 2^61 có tận cùng là chữ số 2 nên 2^61 - 2 sẽ có tận cùng là chữ số 0 chia hết cho 5

Vậy A chia hết cho 5

\(A=2+2^2+2^3+......+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.......+\left(2^{59}+2^{60}\right)\)

\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+.......+2^{59}.\left(1+2\right)\)

\(A=2.3+2^3.3+.......+2^{59}.3\)

\(A=3.\left(2+2^3+....+2^{59}\right)\)

A chia hết cho 3

\(A=2+2^2+2^3+.......+2^{60}\)

\(A=\left(2+2^2+2^3\right)+.........+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2\right)+......+2^{58}.\left(1+2+2^2\right)\)

\(A=2.7+....+2^{58}.7=7.\left(2+....+2^{58}\right)\)

A chia hết cho 7

Nhớ k cho mình nhé! Cảm ơn!!!

11 tháng 10 2018

Ai giúp nguyen phan thu ngan

thì hãy cho mình 1 k

cảm ơn các bjan nhìu!!

11 tháng 10 2018

chỉ tăng có 1 cái thôi thì chán l.tăng ken hắn 5 cái đi

có thể đ là 1 điều có khả thi . mik sẽ gi h nếu có 5 cái k