K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)

=>(d') có VTPT là (-1;1)

Phương trình (d') là;

-1(x-3)+1(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

2: (d) có VTCP là (-1;1)

=>VTPT là (1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+y+1=0

Tọa độ H là;

x+y+1=0 và -x+y+2=0

=>x=1/2 và y=-3/2

 

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:

Viết lại đt $(d_1)$:

$x+2y=m+1-6t+6t$
$\Leftrightarrow x+2y=m+1$
Ta thấy $M(-2,2)\in (d_2)$. Nếu $(d_2)\equiv (d_1)$ thì:

$M(-2,2)\in (d_1)$

$\Leftrightarrow -2+2.2=m+1$

$\Leftrightarrow m=1$

Thay giá trị $m$ vừa tìm được vào 2 ptđt ban đầu thì:
$(d_1)$: $x+2y=2$

$(d_2)$: \(\left\{\begin{matrix} x=-2-2t\\ y=2+t\end{matrix}\right.\)

$\Rightarrow x+2y=-2-2t+2(2+t)=2$ (trùng với $(d_1)$)

Vậy $m=1$

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:

Đường thẳng $(d_1)$ có VTCP là \(\overrightarrow{u_1}=(-\sqrt{2}; \sqrt{2})\)

Đường thẳng $(d_2)$ có VTCP là \(\overrightarrow{u_2}=(-2;2)\)

\(\Rightarrow \overrightarrow{u_2}=\sqrt{2}.\overrightarrow{u_1}(1)\)

Gọi $A(2,2)$ thuộc $(d_1)$

Thay tọa độ điểm $A$ vào $(d_2)$ ta thấy không thỏa mãn nên $A\not\in (d_2)(2)$

Từ $(1);(2)\Rightarrow (d_1); (d_2)$ song song với nhau.

27 tháng 9 2019

giups mình với mình đang cần gấp

1: \(x\in\left(1;5\right)\cup\left(-\infty;-2\right)\)

2: x>1

4: \(x\in\left(-2;+\infty\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:Điểm M,N có vẻ không có vai trò gì trong bài toán. 

Ta có: $\overrightarrow{u_{\Delta}}=(2,-1)$

$\overrightarrow{u_{d'}}=(a,b)$

\(\cos (\Delta, d')=\frac{\overrightarrow{u_{\Delta}}.\overrightarrow{u_d'}}{|\overrightarrow{u_{\Delta}}||\overrightarrow{u_d'}|}=\frac{2a-b}{\sqrt{a^2+b^2}.\sqrt{5}}=\cos 45^0=\frac{\sqrt{2}}{2}\)

$\Rightarrow a=3b$ hoặc $a=-\frac{b}{3}$

PTĐT $d'$ là:

$-x+3y=0$ hoặc $3x+y=0$

27 tháng 2 2021

Tại sao từ cos 450=\(\dfrac{\sqrt{2}}{2}\) thì lại => a=3b hoặc a=\(\dfrac{-b}{3}\) ạ ?