Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hệ \(\left\{{}\begin{matrix}4x-10y+1=0\\x+y+2=0\end{matrix}\right.\)
D = 4.1 = 10.1 = -6 ≠ 0
Vậy d1 và d2 cắt nhau
b) Tương tự, ta có: d1 :\(12x-6y+10=0\) ;
d2= \(2x-y-7=0\)
D = 12 . (-1) - (-6).2 = -12 + 12 = 0
Dx = (-6) . (-7) - (-1). 10 = 42 + 10 = 52 ≠ 0
Vậy d1 // d2
c) Tương tự, ta có d1: \(8x+10y-12=0\)
d2:\(4x+5y-6=0\)
D = 8 . 5 - 4 . 10 = 0
Dx = 10. (-6) - (-12) . 5 = 0
Dy = (-12) . 4 - (-6) . 8 = 0
Vậy d1 trùng d2.
a)\(\Rightarrow d:4x+5y+14=0\)
\(d':4x+5y+14=0\)
Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)
b) \(\Rightarrow d:x+2y-5=0\)
Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)
c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)
1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)
\(\Rightarrow\) phương trình vô nghiệm
a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :
\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)
c) Cách làm tương tự như pt a ta có :
\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)
d) Tương tự ta có :
\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Đường thẳng \(d_2\) có phương trình tổng quát là :
\(3x+4y-2=0\)
Theo định lý, đường phân giác các góc tạo bởi \(d_1,d_2\) có phương trình dạng :
\(\frac{4x+3y-5}{\sqrt{4^2+3^2}}=\pm\frac{3x+4y-5}{\sqrt{3^2+4^2}}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+y-1=0\left(l_1\right)\\x-y-3=0\left(l_2\right)\end{array}\right.\)
Gọi \(\alpha_k\) là góc giữa \(l_k\) và \(d_1\), \(k=1,2\) khi đó
\(\cos\alpha_1=\frac{\left|4.1+3.1\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+1^2\right)}}=\frac{7}{5\sqrt{2}}\)
và
\(\cos\alpha_2=\frac{\left|4.1+3.\left(-1\right)\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+\left(-1^2\right)\right)}}=\frac{1}{5\sqrt{2}}\)
Suy ra \(\cos\alpha_1>\cos\alpha_2\) . Từ đó hàm số \(y=\cos x\) nghịch biến trên \(\left[0;\frac{\pi}{2}\right]\) nên \(0< \alpha_1< \alpha_2< \frac{\pi}{2}\)
Suy ra \(l_1\) là phân giác góc nhọn tạo bởi hai đường thẳng \(d_1;d_2\) đã cho
A B C D u v
Hai đường thẳng \(d_1;d_2\) tại M có tọa độ (x;y) thỏa mãn hệ phương trình
\(\begin{cases}4x+3y-5=0\\x=-2-4t\\y=2+3t\end{cases}\)
Giải hệ ta được M(2;-1). Đường thẳng \(d_2\) có vecto chỉ phương \(\overrightarrow{v}=\left(-4;3\right)\) và đường thẳng \(d_1\) có vecto chỉ phương \(\overrightarrow{u}=\left(-3;4\right)\)
Do \(\overrightarrow{u}.\overrightarrow{v}=\left(-3\right)\left(-4\right)+4.3=24>0\) nên \(\widehat{\left(\overrightarrow{u};\overrightarrow{v}\right)}< \frac{\pi}{2}\)
Vậy đường phân giác của góc nhọn tạo bởi \(d_1;d_2\) đi qua \(M\left(2;-1\right)\)
và có vecto chỉ phương \(\overrightarrow{\omega}=\frac{1}{5}.\overrightarrow{u}+\frac{1}{5}.\overrightarrow{v}=\frac{7}{5}\left(-1;1\right)\)
Suy ra có phương trình :
\(\frac{x-2}{-1}=\frac{y+1}{1}\) hay \(x+y-1=0\)
a) \(\left\{{}\begin{matrix}5x+3y=-7\\2x-4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x-2y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5.\left(3+2y\right)+3y=-7\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13y=-22\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=3+2.\dfrac{-22}{13}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\).
b)\(\left\{{}\begin{matrix}7x+14y=17\\2x+4y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x+28y=34\\14x+28y=35\end{matrix}\right.\) (vô nghiệm)
Vậy hệ phương trình vô nghiệm.
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...