K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Trước hết, ta áp dụng hằng đẳng thức (a + b)3 với a = x + y; b = z. Khi đó ta có:

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)

Phá và rút gọn :

\(=x^3+3x^2y+3xy^2+y^3+z^3-x^3-y^3-z^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3x^2y+3xy^2+3\left(x+y\right)z^2+3\left(x+y\right)^2z\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\) (Bỏ xy là nhân tử chung)

31 tháng 10 2016

Làm như vầy là sai hướng rồi.

Tham khảo :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)

\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)

\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

12 tháng 11 2016

Dùng hằng đẳng thức đáng nhớ thôi b

Ta có y2 - x2 = (y - x)(y + x)

Mà theo đêc bài thì mẫu có (y + x) rồi nên chỉ cần nhân cho (y - x) nữa là được

12 tháng 11 2016

Mình ko hiểu bạn muốn hỏi gì? Câu hỏi mập mờ quá!

12 tháng 11 2016

<!> là gì vậy ak? 

12 tháng 11 2016

tôi nghĩ là giao thừa 

12 tháng 11 2016

sao lại có dấu (- ) dằng trước thế 

VD đúng còn gì

k mk nha

12 tháng 11 2016

VD sai nhé bạn. Chỉ bình phương mới viết được dưới dạng (a-b)^2 = (b-a)^2 (Có hiểu vì sao viết được như này ko?)

Phân tích đa thức sau thành nhân tử:(x + y + z)3 -- x3 -- y3 -- z3giải. * Chú ý. Sử dụng (x + y)3 = x3 + y3 + 3xy.(x+y). THAY: (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z, Ta được:(x + y + z)3 -- x3 -- y3 -- z3 = (x + y)3 -- x3 -- y3 + 3.(x+y+z)(x+y).z                                       = 3xy.(x + y) + 3.(x+ y + z).(x + y).z                                       = 3.(x + y).(xy + xz + yz + z2)                                        = 3.(x + y)(x + z)(y + z).  a)...
Đọc tiếp

Phân tích đa thức sau thành nhân tử:

(x + y + z)3 -- x3 -- y3 -- z3

giải. * Chú ý. Sử dụng (x + y)3 = x+ y3 + 3xy.(x+y). THAY: (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z, Ta được:

(x + y + z)3 -- x3 -- y3 -- z= (x + y)3 -- x3 -- y3 + 3.(x+y+z)(x+y).z

                                       = 3xy.(x + y) + 3.(x+ y + z).(x + y).z

                                       = 3.(x + y).(xy + xz + yz + z2

                                       = 3.(x + y)(x + z)(y + z).  

a) Cô ơi, theo công thức : (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z 

   thì mình phải thay cụm này <  trong đề bài:  (x + y + z)3 -- x3 -- y3 -- z3    > : (x + y + z)bằng: (x + y)3 + z3 + 3(x + y + z)(x + y).z

   nhưng sao trong lời giải người ta thêm là: --- x3 --- y3 là từ đâu có vậy cô? cô giải thích chi tiết, dễ hiểu giúp em nhe cô. em cám ơn    cô.

b) Cô ơi! 

 Cô ơi, cô trình bày chi tiết các bước làm như thế nào để từ dòng này: = 3xy.(x + y) + 3.(x+ y + z).(x + y).z Thành dòng này: 

3.(x+y).(xy + xz + yz + z2) và từ dòng này ( 3.(x + y).(xy + xz + yz + z2)  ) thành dòng này 3.(x + y)(x + z)(y + z). nhe cô? em cám ơn cô nhiều nhe cô :)

3
29 tháng 10 2016

là (x+y+z)3-x3-y3-z3 hả

29 tháng 10 2016

(x+y+z)3-x3-y3-z3

=[ (x+y+z)3-z3] - (x3+y3)

=(x+y+z-z)(x2+y2+z2+2xy+2yz+2zx+xz+yz+z2+z2) -(x+y)(x2-xy+y2)

=(x+y)(x2+y2+3z2+2xy+3yz+3zx -x2-y2+xy)

=(x+y)(3z2+3yz+3xy+3zx)

=3(x+y)[ z(y+z)  +  x(y+z) ]

=3(x+y)(z+x)(y+z)

4 tháng 11 2016

2x2 - 3x - 2 = 2x2 + x - 4x - 2 = x(2x + 1) - 2(2x + 1) = (x - 2)(2x + 1)

Bạn cần luyện tập phân tích đa thức thành nhân tử nha.

4 tháng 11 2016

này như thế này phải không

(4x2+4x-7x-7)(2x+3)= 4x(x+1)-7(x+1)= (4x-7)(x+1)

 phân tích đa thức sau thành nhân tử:(x + y + z)3 -- x3 -- y3 -- z3giải. * Chú ý. Sử dụng (x + y)3 = x3 + y3 + 3xy.(x+y). THAY: (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z, Ta được:(x + y + z)3 -- x3 -- y3 -- z3 = (x + y)3 -- x3 -- y3 + 3.(x+y+z)(x+y).z                                       = 3xy.(x + y) + 3.(x+ y + z).(x + y).z                                       = 3.(x + y).(xy + xz + yz + z2)                                        = 3.(x + y)(x + z)(y + z)....
Đọc tiếp

 

phân tích đa thức sau thành nhân tử:

(x + y + z)3 -- x3 -- y3 -- z3

giải. * Chú ý. Sử dụng (x + y)3 = x+ y3 + 3xy.(x+y). THAY: (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z, Ta được:

(x + y + z)3 -- x3 -- y3 -- z= (x + y)3 -- x3 -- y3 + 3.(x+y+z)(x+y).z

                                       = 3xy.(x + y) + 3.(x+ y + z).(x + y).z

                                       = 3.(x + y).(xy + xz + yz + z2

                                       = 3.(x + y)(x + z)(y + z).  

a) Cô ơi, theo công thức : (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z 

   thì mình phải thay cụm này <  trong đề bài:  (x + y + z)3 -- x3 -- y3 -- z3    > : (x + y + z)bằng: (x + y)3 + z3 + 3(x + y + z)(x + y).z

   nhưng sao trong lời giải người ta thêm là: --- x3 --- y3 là từ đâu có vậy cô? cô giải thích chi tiết, dễ hiểu giúp em nhe cô. em cám ơn    cô.

b) Cô ơi! 

 Cô ơi, cô trình bày chi tiết các bước làm như thế nào để từ dòng này: = 3xy.(x + y) + 3.(x+ y + z).(x + y).z Thành dòng này: 

3.(x+y).(xy + xz + yz + z2) và từ dòng này ( 3.(x + y).(xy + xz + yz + z2)  ) thành dòng này 3.(x + y)(x + z)(y + z). nhe cô? em cám ơn cô nhiều nhe cô :)

2
30 tháng 10 2016

thêm bớt hạng tử ý mà cậu nhân ra sẽ biết thôi

k mk nha

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)