Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+12x+35\)
\(=x^2+5x+7x+35\)
\(=\left(x^2+5x\right)+\left(7x+35\right)\)
\(=x\left(x+5\right)+7\left(x+5\right)\)
\(=\left(x+5\right)\left(x+7\right)\)
b)\(x^2-x-56\)
\(=x^2+7x-8x-56\)
\(=\left(x^2+7x\right)-\left(8x+56\right)\)
\(=x\left(x+7\right)-8\left(x+7\right)\)
\(=\left(x+7\right)\left(x-8\right)\)
c)\(5x^2-x-4\)
\(=5x^2-5x+4x-4\)
\(=\left(5x^2-5x\right)+\left(4x-4\right)\)
\(=5x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+4\right)\)
TL:
a)\(x^2+5x+7x+35\)
=\(x\left(x+5\right)+7\left(x+5\right)\)
=\(\left(x+7\right)\left(x+5\right)\)
b) \(x^2-x-56\)
=\(x^2+7x-8x-56\)
=\(x\left(x+7\right)-8\left(x+7\right)\)
=\(\left(x-8\right)\left(x+7\right)\)
d)\(4x^4+1=\left(2x^2\right)^2+4x^2+1-4x^2\)
=\(\left(2x^2+1\right)^2-4x^2\)
=\(\left(2x^2+1+4x\right)\left(2x^2+1-4x\right)\)
.......................(tự lm)
hc tốt
a) (x-2)(x+2)(x^2-10)-72=(x^2-4)(x^2-82)
b) x^8+x^6+x^4+x^2+1=x^2 (x^4+x^3+x^2+1+1/x^2)
c)(x+y)^4+x^4+y^4=(x+y)^4+(x+y)^4=2 (x+y)^4
a) (x-2)(x+2)(x^2 - 10) -72
= (x^2 - 4)(x^2 - 10) - 72
= x^4 - 4x^2 -10x^2 + 40 - 72
= x^4 - 14x^2 - 32
= x^4 - 16x^2 + 2x^2 - 32
= x^2(x^2 - 16) + 2(x^2 - 16)
= (x^2 - 16)(x^2 + 2)
= (x-4)(x+4)(x^2 + 2)
c) (x+y)4 + x4 + y4
= 2x4 + 4xy3 + 6x2y2 + 4x3y + 2y3
= 2(y4 + 2xy3 + 3x2y2 + 2x3y + x4)
= 2(y2 + xy + y2)2
a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)
b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)
c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)
d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.
a)\(\frac{1}{64}x^6-125y^3=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)
b)\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^4+x^2+1\right)\)
c)\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
d)\(x^9+1=\left(x^3\right)^3+1=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
\(=x^3\left(x+1\right)\left(x^2-x+1\right)\left(x^2-x+1\right)\)
a/ \(x^4+16\)
\(=x^4+4x^2+16-4x^2\)
\(=\left(x^4+4x^2+16\right)-4x^2\)
\(=\left(x^2+4\right)^2-\left(2x\right)^2\)
\(=\left(x^2+4-2x\right)\left(x^2+4+2x\right)\)
b/ \(64x^4+y^4\)
\(=64x^4+y^4+16x^2y^2-16x^2y^2\)
\(=\left(64x^4+y^4+16x^2y^2\right)-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(y^2+8x^2-4xy\right)\left(8x^2+y^2-4xy\right)\)