Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)
1) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow a^2+b^2+1-ab+a+b\ge0\)
\(\Leftrightarrow2a^2+2b^2+2-2ab+2a+2b\ge0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2+2a+1\right)+\left(b^2+2b+1\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra \(\Leftrightarrow a=b=-1\)
2/ \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Áp dụng bđt cosi : \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\frac{1}{a}.\frac{1}{b}}=4\)(ĐPCM)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3/ \(\frac{a^2+a+1}{a^2-a+1}>0\)
Vì \(\hept{\begin{cases}a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\\a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\Leftrightarrow\frac{a^2+a+1}{a^2-a+1}>0\)(ĐPCM)
1. Ta có : \(-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2\cdot x\cdot2+2^2\right)+8\)
\(=-\left(x-2\right)^2+8\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(-\left(x-2\right)^2+8\le8\forall x\)
Dấu " = " xảy ra khi và chỉ khi -(x - 2)2 = 0 => x = 2
Vậy GTLN là 8 khi x = 2
2. \(4-16x^2-8x=16x^2-8x-4\)
\(=\left[\left(4x\right)^2-2\cdot4x\cdot1+1^2\right]-5\)
\(=\left(4x-1\right)^2-5\)
Vì \(\left(4x-1\right)^2\ge0\forall x\)
=> \(\left(4x-1\right)^2-5\le-5\forall x\)
Dấu " = " xảy ra khi và chỉ khi (4x - 1)2 = 0 => x = 1/4
Vậy GTLN là -5 khi x = 1/4
2. Ta có : \(x^2+2x+y^2-6y+10=0\)
=> \(\left(x^2+2x+1\right)+\left(y^2-6y+9\right)=0\)
=> \(\left(x+1\right)^2+\left(y-3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi
+) (x + 1)2 = 0 => x = -1
+) (y - 3)2 = 0 => y = 3
Vậy GTNN bằng 0 khi x = -1,y = 3
Bài 3 làm nốt nhé
P/S : K chắc :<
Giải thích các bước giải:CÂU 3
3a = (4-1) (4+1) (4^2+1) (4^4+1) (4^8+1) (4^16+1)
=(4^2-1) (4^2+1) (4^8+1) (4616+1)
=(4^8-1) (4^8+1 ) (4^16+1)
=(4^16-1)(4^16+1)
=4^32-1 =b ( dpcm)
câu 2: (x+1)^2 +(y-3)^2=0 nếu x=-1 và ngược lại
a)2005.2007 và 20062
2005.2007=2005. (2006 +1)=2005.2006.2005
20062=2006.2006=2006.(2005+1)=2006.2005.2006
=>2005.2007<20062
Câu kia kiến thức lớp 8 mik chịu