Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 + y2 + 2x - 2y = 1
\(\Leftrightarrow\)3x2 + y2 + 2x - 2y - 1 = 0
\(\Leftrightarrow\)2x( x+ 1 ) + ( x + 1 ) ( x - 1 ) - y( y - 1 ) = 0
\(\Leftrightarrow\)( x + 1 ) ( 3x + 1 ) - y( y - 1 ) = 0
\(\orbr{\begin{cases}\left(x+1\right)\left(3x+1\right)=0\\y\left(y-1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\\\hept{\begin{cases}y=0\\y=1\end{cases}}\end{cases}}\)
\(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\Leftrightarrow4xy\left(x+1\right)-4xy\left(y+1\right)+1=\left(xy\right)^3\)
\(\Leftrightarrow\left(4xy-4xy\right)\left(x+1+y+1\right)+1=\left(xy\right)^3\Rightarrow1=\left(xy\right)^3\Rightarrow xy=1\)
=> x=1;y=1
x=-1;y=-1
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
Ta có : \(x^3-y^3-2y^2-3y-1=0\)
\(\Leftrightarrow x^3-\left(y^3+2y^2+3y+1\right)=0\)
\(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Lại có :
\(y^3+2y^2+3y+1=\left(y^3-3y^2+3y-1\right)+5y^2+2=\left(y-1\right)^3+5y^2+2\)
Do \(5y^2\ge0\forall y\Rightarrow\left(y-1\right)^3+5y^2+2\ge\left(y-1\right)^3+2>\left(y-1\right)^3\left(1\right)\)\(y^3+2y^2+3y+1=\left(y^3+3y^2+3y+1\right)-y^2=\left(y+1\right)^3-y^2\)
Do \(y^2\ge0\forall y\Rightarrow\left(y+1\right)^3-y^2\le\left(y+1\right)^3\forall y\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left(y-1\right)^3< x^3\le\left(y+1\right)^3\)
\(\Rightarrow\left[{}\begin{matrix}x^3=\left(y+1\right)^3\left(3\right)\\x^3=y^3\left(4\right)\end{matrix}\right.\)
Từ ( 3 )
\(\Rightarrow x^3=y^3+3y^2+3y+1\)
\(\Rightarrow y^3+2y^2+3y+1=y^3+3y^2+3y+1\)
\(\Rightarrow y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left(y+1\right)^3=1\)
\(\Rightarrow x^3=1\)
\(\Rightarrow x=1\)
Từ ( 4 )
\(\Rightarrow y^3+2y^2+3y+1=y^3\)
\(\Rightarrow2y^2+3y+1=0\)
\(\Rightarrow2y^2+2y+y+1=0\)
\(\Rightarrow2y\left(y+1\right)+y+1=0\)
\(\Rightarrow\left(2y+1\right)\left(y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y+1=0\\y+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-\dfrac{1}{2}\left(L;y\in Z\right)\\y=-1\end{matrix}\right.\)
\(\Rightarrow y^3=-1=x^3\)
\(\Rightarrow x=-1\)
Vậy \(\left(x,y\right)\in\left\{\left(-1,-1\right);\left(1,0\right)\right\}\)
Lời giải:
Ta đưa về bài toán tìm nghiệm nguyên dương.
TH1: x,y∈Z+x,y∈Z+
PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y
Nếu x=yx=y thì hiển nhiên có xy=1⇒x=y=1xy=1⇒x=y=1.
Xét x>yx>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)
Vì 2(x−y)−1≠02(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0
⇒y−2<0→y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)
TH2: x,yx,y đều âm. Ta thay x=−a,y=−bx=−a,y=−b với a,ba,b nguyên dương.
Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3
Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=−1x=y=−1
TH3: x>0,y<0x>0,y<0. Đặt x=a,y=−bx=a,y=−b (a,ba,b nguyên dương)
PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3
⇒2(a+b)−1⋮ab⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠02(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤32(a+b)−1≥ab⇒(a−2)(b−2)≤3
Với a,b≥1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn
TH4: x<0,y>0x<0,y>0. Đặt x=−a,y=bx=−a,y=b (a,ba,b nguyên dương)
PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)
Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(−1;−1)
Lời giải:
Ta đưa về bài toán tìm nghiệm nguyên dương.
TH1: x,y∈Z+x,y∈Z+
PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y
Nếu x=yx=y thì hiển nhiên có xy=1⇒x=y=1xy=1⇒x=y=1.
Xét x>yx>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)
Vì 2(x−y)−1≠02(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0
⇒y−2<0→y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)
TH2: x,yx,y đều âm. Ta thay x=−a,y=−bx=−a,y=−b với a,ba,b nguyên dương.
Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3
Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=−1x=y=−1
TH3: x>0,y<0x>0,y<0. Đặt x=a,y=−bx=a,y=−b (a,ba,b nguyên dương)
PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3
⇒2(a+b)−1⋮ab⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠02(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤32(a+b)−1≥ab⇒(a−2)(b−2)≤3
Với a,b≥1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn
TH4: x<0,y>0x<0,y>0. Đặt x=−a,y=bx=−a,y=b (a,ba,b nguyên dương)
PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)
Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(−1;−1)