K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:
Đặt $x-y=a; xy=b$ thì hpt trở thành:
\(\left\{\begin{matrix} x-y+2xy=5\\ (x-y)^2+3xy=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+2b=5\\ a^2+3b=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3a+6b=15\\ 2a^2+6b=14\end{matrix}\right.\)

\(\Rightarrow 2a^2-3a=-1\)

$\Leftrightarrow 2a^2-3a+1=0$

$\Leftrightarrow (a-1)(2a-1)=0$

$\Rightarrow a=1$ hoặc $a=\frac{1}{2}$

Nếu $a=1$ thì $b=2$. Khi đó: $x-y=1; xy=2$ nên theo định lý Viet đảo thì $x,-y$ là nghiệm của pt:

$X^2-X-2=0$

$\Rightarrow (x,-y)=(2,-1), (-1,2)\Rightarrow (x,y)=(2,1), (-1,-2)$

Nếu $a=\frac{1}{2}$ thì $b=\frac{9}{4}$. Khi đó theo định lý Viet đảo thì $x,-y$ là nghiệm của pt:

$X^2-\frac{1}{2}X-\frac{9}{4}=0$

$\Rightarrow (x,-y)=(\frac{1+\sqrt{37}}{4}, \frac{1-\sqrt{37}}{4}), (\frac{1-\sqrt{37}}{4}, \frac{1+\sqrt{37}}{4})$

$\Rightarrow (x,y)= (\frac{1+\sqrt{37}}{4}, \frac{-1+\sqrt{37}}{4}), (\frac{1-\sqrt{37}}{4}, \frac{-1-\sqrt{37}}{4})$

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lần sau bạn lưu ý không đăng 1 bài nhiều lần. Nếu bạn còn đăng vậy lần nữa sẽ bị tính là spam và bị xóa không thương tiếc đó nhé.

22 tháng 4 2020

a) Thay m=3 vào hpt \(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\3x+2-2x=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

Vậy m=3 thì hpt có nghiệm duy nhất (x,y)=(1;0)

b)Ta có  \(\hept{\begin{cases}x=1-y\\m-my+2y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\\left(2-m\right)y=0\left(2\right)\end{cases}}\)

Để hpt có nghiệm duy nhất \(\Leftrightarrow pt\left(2\right)\ne0\Leftrightarrow2-m\ne0\Leftrightarrow m\ne2\)

Khi đó \(\left(2\right)\Leftrightarrow y=0\).Thay vào \(\left(1\right)\Leftrightarrow x=1\)

Để hpt có vô số nghiệm \(\Leftrightarrow2-m=0\Leftrightarrow m=2\)

Vậy m\(\ne\)2 thì hpt có nghiệm duy nhất (x;y)=(1;0)

      m=2 thì hpt có vô số nghiệm

21 tháng 12 2022

a: Khi a=2 thì hệ sẽ là 3x-y=3 và x+y=2

=>x=5/4 và y=2-x=3/4

b: Để hệ có nghiệm duy nhất thì \(\dfrac{a+1}{1}< >\dfrac{-1}{a-1}\)

=>a^2-1<>-1

=>a^2<>0

=>a<>0

Để hệ phương trình có vô số nghiệm thì \(\dfrac{a+1}{1}=\dfrac{-1}{a-1}=\dfrac{a+1}{2}\)

=>a^2-1=-1 và a+1=0

=>a=0 và a=-1(loại)

Để hệ vô nghiệm thì \(\dfrac{a+1}{1}=\dfrac{-1}{a-1}< >\dfrac{a+1}{2}\)

=>a^2-1=-1 và 2a+2<>a+1

=>a=0

23 tháng 3 2020

a) Thay 1 vào m, ta có:

\(\hept{\begin{cases}x+1y=1+1\\1x-y=3\times1-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1y=2\\x=2+y\end{cases}}\)

Thế giá trị đã cho vào phương trình:\(2+y+1y=2\)

\(\Leftrightarrow2+2y=2\)

\(\Leftrightarrow2y=0\Rightarrow y=0\)

Thay giá trị đó vào phương trình:\(x=2+0\Rightarrow x=2\)

12 tháng 9 2015

x2 + y2 + 2x + 2y = 11 <=> (x2 + 2x) + (y2 + 2y) = 11 <=> x(x + 2) + y(y +2) = 11

xy(x+2)(y+2) = m <=> [x(x+2)].[y(y+2)] = m

đặt a = x(x+2); b = y(y +2)

Khi đó ta có hệ phương trình: a + b = 11; ab = m

Theo hệ thức Vi ét đảo => a; b là ngiệm của phương trình t2 - 11t + m = 0   (*)

a) khi m = 24 .

(*) <=> t2 - 11t + 24 = 0 <=> t- 3t - 8t + 24 = 0 <=> (t - 3).(t - 8) = 0 <=> t = 3 hoặc t = 8

=> a = 8 ; b = 3 hoặc a = 3; b = 8

+) a =8 => x(x+2) = 8 => x2 + 2x - 8 = 0 => (x+1)2 = 9 <=> x + 1 = 3 hoặc x+ 1 = -3 <=> x = 2 hoặc x = -4

b = 3 => y(y +2) = 3 <=> y+ 2y - 3 = 0 <=> (y +1)= 4 => y + 1 = 2 hoặc y + 1 = -2 => y = 1 hoặc y = -3

tương tự, a = 3; b = 8

Vậy nghiệm của hệ là (x; y) = (2;1)(2;-3)(-4;1); (-4;-3) ; (1;2); (-3;2); (1;-4); (3;-4)

b)  Vì a = x(x+2) => x2 + 2x = a <=> (x+1)= a+ 1; b = y(y + 2) => (y +1)2  = b + 1

=> a+ 1 \(\ge\) 0 và b+ 1 \(\ge\) 0 <=> a ; b \(\ge\) -1

Để hệ có nghiệm <=>  (*) có 2  nghiệm t1; t2   \(\ge\) -1 

<=> \(\Delta\) \(\ge\) 0 ; t1 \(\ge\) -1; t2 \(\ge\) -1

+) \(\Delta\) \(\ge\) 0 <=> 121 - 4m \(\ge\) 0 <=> 30,25 \(\ge\) m

+)  t1 \(\ge\) -1; t2 \(\ge\) -1 <=> t1 +1 \(\ge\) 0 ; t2 + 1 \(\ge\) 0 

<=> (t1 + 1) + (t2 + 1) \(\ge\) 0 và (t1 + 1)(t2 + 1) \(\ge\) 0

Theo hệ thức Vi ét ta có : t1 + t = 11/2 = 5,5; t1.t2 = m 

Suy ra (t1 + 1) + (t2 + 1)  =7,5  \(\ge\) 0  (đúng) và (t1 + 1)(t2 + 1) = t1.t2 + (t+ t2) + 1 = m + 5,5 + 1 = m + 6,5  \(\ge\) 0 => m \(\ge\) - 6 ,5 

Vậy để hệ có nghiệm <=> -6,5 \(\le\) m \(\le\) 30,25 

27 tháng 1 2020

Câu 1 thiếu đề rồi

Hỏi đáp Toán