Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)
~Ta có AB // DC ( ABCD là hbh )
=> BM // CN ( M THuộc AB , N thuộc DC ) (1)
~Ta có M là trung điểm AB , N là trung điểm DC => MN là đường trung bình của hbh ABCD => MN // BC (2)
Từ (1) và (2) => BCMN là hbh , (*)
Ta có : M là trung điểm AB => BM = 1/2 AB
Lại có BC = 1/2 AB ( giả thuyết )
=> BM = BC (**)
từ (*) và (**) => BCMN là hthoi. ( hbh có 2 cạnh bên bằng nhau là hình thoi )
B)
~ Ta có MB // DN ( AB // DC ) (3 )
có MB = 1/2 AB , DN = 1/2 DC
=> MB = DN ( vì AB = DC ) (4)
từ (3) và (4) => DMBN là hbh
C)
Ta có : E là trung điểm MD ( ADNM là hbh )
F là tđ MC ( MBNC là hbh )
xét tam giác MDC có : E là tđ MD , F là tđ MC => EF là dd` trung trực tam giác DMC
=> EF // DC => EFCD là hình thang
Time anh k cho phép nên anh chưa giải câu D được. nếu cần thì ib anh nha ^^
2 câu trả lời ở đâu vậy bạn??? :V
( có cc a giải cho nhé
Thân )
a, \(\widehat{BMG}=\widehat{AHD}\left(=\widehat{BAH}\right)\)
\(\Delta ADH\infty\Delta GBM\left(g.g\right)\Rightarrow\frac{AD}{GB}=\frac{DH}{BM}\Rightarrow AD.BM=GB.DH\)
Mặt khác, \(AD.BM=a.\frac{a}{2}=\frac{1}{2}a^2\)
\(OB.OD=\left(\frac{a}{\sqrt{2}}\right)^2=\frac{1}{2}a^2\Rightarrow AD.BM=OB.OD=GB.DH\)
\(\Rightarrow\frac{BO}{BG}=\frac{DH}{OD}\Rightarrow BO^2=BG.DH\left(OB=OD\right)\)
b, \(\Delta BOG\infty\Delta DHO\left(c.g.c\right)\Rightarrow\widehat{BGO}=\widehat{DOH}\)
Mà \(\widehat{BOG}+\widehat{BGO}=180^0-\widehat{OBG}=135^0\Rightarrow\widehat{BOG}+\widehat{DOH}=135^0\Rightarrow\widehat{GOH}=45^0\)
ukm
bài này em làm đc những ý nào rôi
để ah hướng dẫn những ý còn lại
a) cm tứ giác MNCP là hình bình hành
Xét \(\Delta AHB\)có:
MA = MH ( vì M là trung điểm của AH )
NH = NB ( vì N là trung điểm của BH )
Vậy => MN là đường trung bình của \(\Delta AHB\)
=> MN // AB và MN = 1/2 AB
Mà AB = CD ( vì ABCD là hình chữ nhật )
Vậy => MN // CD và MN = 1/2 CD
mà PC = 1/2 CD ( Vì P là trung điểm của CD )
Vậy => MN // CP và MN = CP
=> MNCP là hình bình hành
b) cm N là trực tâm của \(\Delta MBC\)
Vì MNCP là hình bình hành ( theo cm phần a )
=> MN // CP
Mà \(CP\perp BC\)( vì ABCD là hình chữ nhật )
Vậy => \(MN\perp BC\)
Xét \(\Delta CMB\)có
BH và MN cắt nhau tại M
\(MN\perp CB\left(cmt\right)\)
\(BH\perp MC\left(theogt\right)\)
Vậy => N là trực tâm của \(\Delta MBC\)
c) cm MP vuông góc với MB
Vì N là trực tâm của \(\Delta MBC\)( theo cm phần b )
=> \(CN\perp MB\)
Mà \(CN//MP\)( vì MNCP là hình bình hành )
Vậy => \(MB\perp MP\)
d) gọi I là trung điểm của BP và J là giao điểm của AC và NP
cm 2( MI - IJ ) < NP
Vì \(MB\perp MP\)( theo cm phần c )
=> \(\Delta BMP\)vuông tại M
Mà I là trung điểm của BP
Vậy => MI = IB = IP = 1/2 BP
Xét \(\Delta IJP\)có:
( IP - IJ ) < JP
=> 2(IP - IJ) < 2JP
mà IP = IP ( theo cmt )
2JP = PN ( vì I là trung điểm của PN )
Vậy => 2(MI - IJ) < NP