K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(P=\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{3^2+6\sqrt{5}+\sqrt{5}^2}+\sqrt{3^2-6\sqrt{5}+\sqrt{5}^2}\)

\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)

\(=3+\sqrt{5}+3-\sqrt{5}\)

\(=6\)

26 tháng 6 2016

a/ Ta có: \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}\)

    \(=3-\sqrt{5}+3+\sqrt{5}=6\)

b/ \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

     \(=\sqrt{5}-2-\sqrt{5}-2=-4\)

10 tháng 9 2018

\(\sqrt{\left(6-2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}=0\)

10 tháng 7 2017

Ta có :

a)\(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}-\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

b)\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

c)\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)

28 tháng 6 2019

\(\sqrt{14+6\sqrt{5}}-\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}=5\)

28 tháng 6 2019

\(\sqrt{14+6\sqrt{5}}-\sqrt{\frac{\sqrt{5-2}}{\sqrt{5}+2}}=5\)

28 tháng 6 2019

\(\sqrt{14+6\sqrt{5}}-\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}=\sqrt{9+3.2\sqrt{5}+5}-\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}=\sqrt{3^2+3.2\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}=\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{\frac{\left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}=3+\sqrt{5}-\sqrt{\frac{\left(\sqrt{5}-2\right)^2}{5-2^2}}=3+\sqrt{5}-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left(\sqrt{5}-2\right)\left(2=\sqrt{4}< \sqrt{5}\right)=3+\sqrt{5}-\sqrt{5}+2=5\)

28 tháng 6 2019

giỏi

24 tháng 10 2018

\(\sqrt{\left(\sqrt{5}+3\right)^2}+\sqrt{14-6\sqrt{5}}\)\(=\left|\sqrt{5}+3\right|+\sqrt{9-2.3\sqrt{5}+5}\)

\(=\sqrt{5}+3+\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}+3+\left|3-\sqrt{5}\right|\)

\(=\sqrt{5}+3+3-\sqrt{5}=6\) ( do \(3-\sqrt{5}>0\))

17 tháng 7 2017

\(H=2\sqrt{27}+\sqrt{243}-6\sqrt{12}\\ =2\cdot\sqrt{9}\cdot\sqrt{3}+\sqrt{81}\cdot\sqrt{3}-6\cdot\sqrt{4}\cdot\sqrt{3}\\ =2\cdot3\cdot\sqrt{3}+9\cdot\sqrt{3}-6\cdot2\cdot\sqrt{3}\\ =6\sqrt{3}+9\sqrt{3}-12\sqrt{3}\\ =3\sqrt{3}=\sqrt{9}\cdot\sqrt{3}=\sqrt{27}\)

\(I=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\\ =\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\\ =\sqrt{\sqrt{13}^2-2\cdot\sqrt{13}\cdot1+1^2}+\sqrt{\sqrt{13}^2+2\cdot\sqrt{13}\cdot1+1^2}\\ =\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\\ =\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\\ =\sqrt{13}-1+\sqrt{13}+1\\ =2\sqrt{13}=\sqrt{4}\cdot\sqrt{13}=\sqrt{52}\)

\(I=\sqrt{10-4\sqrt{6}}+\sqrt{10+4\sqrt{6}}\\ =\sqrt{6-2\cdot\sqrt{6}\cdot2+4}+\sqrt{6+2\cdot\sqrt{6}\cdot2+4}\\ =\sqrt{\sqrt{6}^2-2\cdot\sqrt{6}\cdot2+2^2}+\sqrt{\sqrt{6}^2+2\cdot\sqrt{6}\cdot2+2^2}\\ =\sqrt{\left(\sqrt{6}-2\right)^2}+\sqrt{\left(\sqrt{6}+2\right)^2}\\ =\left|\sqrt{6}-2\right|+\left|\sqrt{6}+2\right|\\ =\sqrt{6}-2+\sqrt{6}+2\\ =2\sqrt{6}=\sqrt{4}\cdot\sqrt{6}=\sqrt{24}\)

17 tháng 7 2017

Làm giúp mik câu L* vs bạn =[[

28 tháng 7 2020

thắc mắc nếu sửa đề thì cũng đâu dẹp hơn mấy đâu ạ

Sửa đề: \(D=\left(\sqrt{14}-\sqrt{6}\right)\cdot\left(5+\sqrt{21}\right)\cdot\sqrt{4-\sqrt{7}}\)

Ta có: \(D=\left(\sqrt{14}-\sqrt{6}\right)\cdot\left(5+\sqrt{21}\right)\cdot\sqrt{4-\sqrt{7}}\)

\(=\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\cdot\sqrt{4-\sqrt{7}}\)

\(=\sqrt{8-2\sqrt{7}}\cdot\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\)

\(=\left(\sqrt{7}-1\right)\cdot\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\)

\(=\left(7-\sqrt{21}-\sqrt{7}+\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\)

\(=35+7\sqrt{21}-5\sqrt{21}-21-5\sqrt{7}-7\sqrt{3}+5\sqrt{3}+3\sqrt{7}\)

\(=14+2\sqrt{21}-2\sqrt{7}-2\sqrt{3}\)