K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

\(\sqrt{14+6\sqrt{5}}-\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}=5\)

28 tháng 6 2019

\(\sqrt{14+6\sqrt{5}}-\sqrt{\frac{\sqrt{5-2}}{\sqrt{5}+2}}=5\)

2 tháng 10 2016

\(D=\sqrt{\frac{\left(5+2\sqrt{6}\right)^2}{25-24}}+\sqrt{\frac{\left(5-2\sqrt{6}\right)^2}{25-24}}=5+2\sqrt{6}+5-2\sqrt{6}=10\)

a) Đặt \(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)

\(A^2=5-2\sqrt{6}+2\sqrt{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}+5+2\sqrt{6}\)

\(=10+2\sqrt{25-4.6}=10+2\sqrt{1}=10+2=12\)

\(\Rightarrow A=\sqrt{12}\)

b)\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{2}}{\sqrt{5}-1}+\frac{\sqrt{2}.\sqrt{2}-\sqrt{2}}{\sqrt{2}-1}\)

\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

14 tháng 11 2019

\(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}+\frac{\left(\sqrt{6}+\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2+\left(\sqrt{6}+\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\frac{11-2\sqrt{30}+11+2\sqrt{30}}{\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2}\)

\(=\frac{22}{1}=22\)

14 tháng 11 2019

\(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)+\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2+\left(\sqrt{6}+\sqrt{5}\right)^2}{\sqrt{6}^2+\sqrt{5}^2}\)

\(=\sqrt{6}^2-2\sqrt{6}.\sqrt{5}+\sqrt{5}^2+\sqrt{6}^2+2\sqrt{6}.\sqrt{5}+\sqrt{5}^2\)

\(=6+5+6+5=22\)

15 tháng 6 2017

Đặt \(B=\frac{\sqrt{11+\sqrt{5}}+\sqrt{11-\sqrt{5}}}{\sqrt{11+2\sqrt{29}}}\)Ta có B>0

\(B^2=2\Rightarrow B=\sqrt{2}\)

Vậy \(A=\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}=2\)

15 tháng 8 2018

bạn đặt A=biểu thức rồi tính  \(\frac{1}{\sqrt{2}}A\)  là ra

\(M=\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{2-\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)

\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{5}+1}+\frac{2-\sqrt{5}}{2-\sqrt{5}-1}\)

\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{3+\sqrt{5}}+\frac{2-\sqrt{5}}{1-\sqrt{5}}\)


P/s làm tiếp nha , hình như bạn ghi đề sai dấu

17 tháng 8 2016

1.052631148

17 tháng 8 2016

có hiểu rút gọn là j ko thế

\(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\frac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)

\(=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\frac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}\)

\(=\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}\)

\(=\sqrt{5}+\sqrt{6}\)