Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn làm tương tự như thế này nhé! http://olm.vn/hoi-dap/question/72512.html
Ta có
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)
\(\Rightarrow A< 1\frac{3}{4}-\frac{1}{2016}< 1\frac{3}{4}\)
=> đpcm
\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
\(B=2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
\(B=1+\left(\frac{2015}{2}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)\)
\(B=\frac{2017}{2017}+\frac{2017}{2}+...+\frac{2017}{2015}+\frac{2017}{2016}\)
\(B=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\frac{B}{A}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{2}{2017}}=2017\)
\(b.\)ghi lại đề nha bn
\(=\frac{2.2306}{1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{230.231}{2}}}\)
\(=\frac{2.2306}{1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{230.231}}\)
\(=\frac{2.2306}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{230.231}\right)}\)
\(=\frac{2.2306}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{230}-\frac{1}{231}\right)}\)
\(=\frac{2.2306}{1+2.\left(\frac{1}{2}-\frac{1}{231}\right)}\)
\(=\frac{2.2306}{1+1-\frac{2}{231}}\)
\(=\frac{2.2306}{2-\frac{2}{231}}\)
\(=\frac{2.2306}{2\left(1-\frac{1}{231}\right)}\)
\(=\frac{2306}{1-\frac{1}{231}}\)
mình nha bn thanks nhìu <3
a) \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2017}{2}+...+\frac{2017}{2016}+\frac{2017}{2017}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017.\left(\frac{1}{2}+...+\frac{1}{2016}+\frac{1}{2017}\right)}\)
\(=\frac{1}{2017}\)
Ta có \(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
\(\Rightarrow B=1+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)\)
\(\Rightarrow B=\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}\)
\(\Rightarrow B=2017.\left(\frac{1}{2017}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)\)
\(\Rightarrow B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)= 2017
~ Chúc bạn học tốt
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2015^2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2015}\)
\(\Rightarrow A< \approx0,75\)
Vậy.....
giể mà k đi làm cho