K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(2bd=c\left(b+d\right)\)

a+c=2b

Do đó: \(d\left(a+c\right)=c\left(b+d\right)\)

\(\Leftrightarrow\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{c-a-c}{d-b-d}=\dfrac{-a}{-b}=\dfrac{a}{b}\)

hay \(\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 1 2021

Lời giải:

Vì $a+c=2b\Rightarrow d(a+c)=2bd$

Mà $2bd=c(b+d)$ nên $d(a+c)=c(b+d)$

$\Leftrightarrow ad+cd=bc+cd$

$\Leftrightarrow ad=bc\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

31 tháng 10 2018

Ta có:

\(2bd=c\left(b+d\right)\)

\(\Rightarrow\left(a+c\right).d=bc+cd\)

\(\Rightarrow ad+cd=bc+cd\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

30 tháng 10 2018

Giúp mik nha

😁😁😁😁😁

8 tháng 1 2021

Thay a+c=2b vào 2bd=c(b+d)

=> (a+c)d=c(b+d)=> ad+cd=bc+cd => ad=bc \(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)

2 tháng 9 2016

đặt a+c vào 2bd ta có (a+c)d = c(b+d) <=> ad+ cd = bc + cd <=> ad = bc <=> a/ b = c/ d

(thay a+c vào 2bd vì a+c = 2b )

22 tháng 11 2019

d(a+c)=2bd=c(b+d)

Suy ra ad+dc=cb+cd

ad=cb

Ta suy ra  được a/b=c/d

20 tháng 10 2021

\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)

\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

20 tháng 10 2021

Ta có: 

\(a+c=2b_{\left(1\right)}\)

\(2bd=c\left(b+d\right)_2\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)

\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )

\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))

\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )

\(\Rightarrow\)\(\left(đpcm\right)\)

30 tháng 1 2017

a + c  =2b ( 1 )

2bd = c(b+d) ( 2)

từ (1) và (2) ta được:

( a+ c ) .d = c.( b + d )

theo tính chất phân phối ta có"

ad + cd = cb + cd

=> ad = cb => a/b = c/d

k mknhes

29 tháng 10 2016

Ta có: 2bd = c(b + d)

=> (a + c).d = bc + cd

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

15 tháng 1 2018

Ta có : 2bd = c (b + d )

=) ( a + c ). d = bc + cd

=) ad + cd = bc + cd

=) ad = bc

=) a/b = c/ d ( đpcm)