K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Giả sử a = b = 1 thì

ba3 - ab3 - 2ab = 1 - 1 - 2 = 2 không chia hết cho 3

=> Đề sai

30 tháng 9 2020

7a+25b+61c=(6a+24b+60c)+(a+b+c) chia hết cho 6, mà 6a+24b+60c chia hết cho 6 => a+b+c chia hết cho 6

Từ hằng đẳng thức: a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ac)

Ta thấy vế phải chia hết cho 6 nên vế trái chia hết cho 6

Ta có a+b+c chia hết cho 6 nên a+b+c chẵn. 

a+b+c chẵn khi cả 3 số đều chẵn hoặc có 1 số chẵn và 2 số lẻ => tích abc chẵn => abc=2n => 3abc=6n chia hết cho 6

Vế trái của hằng đẳng thức chia hết cho 6 mà 3abc chia hết cho 6 nên a3+b3+c3 chia hết cho 6

DD
7 tháng 11 2021

\(a+b+c=c^3-19c=c^3-c-18c=c\left(c-1\right)\left(c+1\right)-18c\)

Có \(c\left(c-1\right)\left(c+1\right)\)là tích của ba số nguyên liên tiếp nên chia hết cho \(6\)\(18c\)chia hết cho \(6\)

suy ra \(a+b+c\)chia hết cho \(6\).

\(a^3+b^3+c^3-a-b-c=a^3-a+b^3-b+c^3-c\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)

có \(a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)chia hết cho \(6\)do là tổng của \(3\)số hạng chia hết cho \(6\)\(a+b+c\)chia hết cho \(6\)

suy ra \(a^3+b^3+c^3\)chia hết cho \(6\).

3 tháng 10 2020

A B C H

Dễ thôi, ta có:

Kẻ đường cao BH ta được: \(BC^2=BH^2+HC^2\)

\(\Leftrightarrow a^2=\left(AB^2-AH^2\right)+\left(AC-AH\right)^2\)

\(=c^2-AH^2+b^2-2\cdot b\cdot AH+AH^2\)

\(=b^2+c^2-2\cdot AH\cdot b\)

\(=b^2+c^2-2ab\cdot\cos A\)

20 tháng 8 2017

không phải nha bạn

23 tháng 10 2018

ko biết làm

3 tháng 1 2020

Ta có : x3 chia 7 thì dư 0,1 hoặc 6 ( chứng minh ) với x nguyên

Xét 3 số a,b,c có 1 số chia hết cho 7 thì abc(a3 - b3 )(b3 - c3 )(c3 - a3 ) \(⋮\)7

Xét 3 số a,b,c đều không chia hết cho 7 thì a3,b3,c3 chia 7 dư 1 hoặc 6

nên trong 3 hiệu a3 - b3, b3 - c3, c3 - a3 phải có ít nhất 1 hiệu chia hết cho 7

suy ra abc(a3 - b3 )(b3 - c3 )(c3 - a3 ) \(⋮\)7

NM
3 tháng 9 2021

không mất tổng quát ta giả sử ba số lần lượt là :

\(a,b=a+1,c=a+2\)

ta có \(a^3+b^3+c^3=a^3+\left(a+1\right)^3+\left(a+2\right)^3=a^3+a^3+3a^2+3a+1+a^2+6a^2+12a+8\)

\(=3a^3+9a^2+15a+9=3\left(a^3+3a^2+5a+3\right)\text{ chia hết cho 3}\)

Vậy ta có đpcm