K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Ta có : x3 chia 7 thì dư 0,1 hoặc 6 ( chứng minh ) với x nguyên

Xét 3 số a,b,c có 1 số chia hết cho 7 thì abc(a3 - b3 )(b3 - c3 )(c3 - a3 ) \(⋮\)7

Xét 3 số a,b,c đều không chia hết cho 7 thì a3,b3,c3 chia 7 dư 1 hoặc 6

nên trong 3 hiệu a3 - b3, b3 - c3, c3 - a3 phải có ít nhất 1 hiệu chia hết cho 7

suy ra abc(a3 - b3 )(b3 - c3 )(c3 - a3 ) \(⋮\)7

DD
7 tháng 11 2021

\(a+b+c=c^3-19c=c^3-c-18c=c\left(c-1\right)\left(c+1\right)-18c\)

Có \(c\left(c-1\right)\left(c+1\right)\)là tích của ba số nguyên liên tiếp nên chia hết cho \(6\)\(18c\)chia hết cho \(6\)

suy ra \(a+b+c\)chia hết cho \(6\).

\(a^3+b^3+c^3-a-b-c=a^3-a+b^3-b+c^3-c\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)

có \(a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)chia hết cho \(6\)do là tổng của \(3\)số hạng chia hết cho \(6\)\(a+b+c\)chia hết cho \(6\)

suy ra \(a^3+b^3+c^3\)chia hết cho \(6\).

NM
3 tháng 9 2021

không mất tổng quát ta giả sử ba số lần lượt là :

\(a,b=a+1,c=a+2\)

ta có \(a^3+b^3+c^3=a^3+\left(a+1\right)^3+\left(a+2\right)^3=a^3+a^3+3a^2+3a+1+a^2+6a^2+12a+8\)

\(=3a^3+9a^2+15a+9=3\left(a^3+3a^2+5a+3\right)\text{ chia hết cho 3}\)

Vậy ta có đpcm

2 tháng 9 2015

1, n có dạng 2k+1(n\(\in N\)) Ta có: 

  \(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\) 

                                 \(=4k^2+4k+1+8k+4+3\) 

                                 \(=4k^2+12k+8\) 

                                 \(=4\left(k^2+3k+2\right)\) 

                                \(=4\left(k+1\right)\left(k+2\right)\) 

vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2  

 mà 4(k+1)(k+2)chia hết cho 4 

\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n  là số lẻ. 

2, ta có:  

        \(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\) 

 \(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

22 tháng 10 2017

ko biết

22 tháng 10 2017

nhóm 2 cái 1 mà tính

kết quả cuối cùng là :24abc=> chia hết cho  24

3 tháng 1 2021

Ta có :

\(a+b=c^3-2018\Leftrightarrow a+b+c=\left(c-1\right).c\left(c+1\right)-2016c⋮6\)

Mặt khác :

\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right).a\left(a+1\right)+\left(b-1\right)b.\left(b+1\right)+\left(c-1\right).c\left(c+1\right)⋮6\)

Do vậy \(a^3+b^3+c^3⋮6\)

3 tháng 1 2021

thằng tuấn khôi , 

8 tháng 2 2020

Xét 4 TH

TH1: \(a=max\left\{a,b,c,d\right\}\). Từ \(b^5+c^5+d^5=3a^5\Rightarrow\)\(a=b=c=d\)

TH2: \(b=max\left\{a,b,c,d\right\}.\)Từ \(c^7+d^7+a^7=3b^7\Rightarrow a=b=c=d\)

TH3: \(c=max\left\{a,b,c,d\right\}\). Từ \(a^3+b^3+c^3=3d^3\ge3abc\Rightarrow d^3\ge abc\)(1)

Từ \(b^5+c^5+d^5=3a^5\ge3\sqrt[3]{b^5c^5d^5}\Rightarrow a\ge\sqrt[3]{bcd}\Rightarrow a^3\ge bcd\)(2)

Từ \(c^7+d^7+a^7=3b^7\Rightarrow3b^7\ge3\sqrt[3]{c^7d^7a^7}\Rightarrow b\ge\sqrt[3]{cda}\)

\(\Rightarrow b^3\ge cda\)(3)

Từ(1)(2)(3) suy ra \(abd\ge c^3\)\(c\) max \(\Rightarrow a=b=c=d\)

TH4: \(d=max\left\{a,b,c,d\right\}.\)Từ \(a^3+b^3+c^3=3d^3\)\(\Rightarrow a=b=c=d\)

Vậy ta có \(a=b=c=d\)

Bài này khá là hay

8 tháng 2 2020

tui đã từng gặp rồi đây là câu 1.2 trong đề thi hsg toán 9 tp Hà Nội

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)