Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)
\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)
b: \(=69\left(69-5\right)=69\cdot64⋮32\)
\(8^5+2^{11}=2^{15}+2^{11}\)
\(=2^{11}.2^4+2^{11}.1\)
\(=2^{11}.\left(16+1\right)\)
\(=2^{11}.17\)
a,
8^5 = (2³)^5 = 2^15
<=> 2^15+2^11 = (2^11)[(2^4)+1]
= (2^11)17 chia hết 17
b,
69(69 -5) = (69).(64)
64=(32).2
<=> 69^2-69.5 là bội số của 64, mà 64 là bội số của 32, nên chia hết cho 32
c,
Ta có : 328^3 + 172^3 = ( 328 + 172 )( 328^2 - 328 . 172 + 172^2 )
= 500 . [ (2 . 191 )^2 - 382 . 4 . 43 + ( 2 . 86 )^2 ]
= 500 . [ 4 . 191^2 - 4 . 382 . 43 + 4 . 86^2 ]
= 2000 . ( 191^2 - 382 . 43 + 86^2 )
Vì 2000 chia hết cho 2000 nên 2000 . ( 191^2 - 382 . 43 + 86^2 ) chia hết cho 2000 (đpcm)
d,
Ta có a^n + b^n =(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19 = (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44
\(P=2+2^2+2^3+...+2^{2020}\)
\(P=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2019}+2^{2020}\right)\)
\(P=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2019}\left(1+2\right)\)
\(P=2.3+2^3.3+...+2^{2019}.3\)
\(P=3\left(2+2^3+...+2^{2019}\right)\)
\(\Rightarrow P⋮3\)
Lại có: \(P⋮2\)mà 2 x 3 = 6; ƯCLN(2; 3) = 1
\(\Rightarrow P⋮6\)
bạn Tiến dũng trương giải tào lao quá, không biết làm thì đừng cmt linh tinh nhé!
19 là số nguyên tố thì \(19^n\)làm sao chia hết cho 44 được
Giải: CHÚ Ý: mình dùng dấu = cho mod vì không gõ được
Ta có: \(19^5\)=-1 (mod 44) => \(19^{19}=\left(-1\right)^3.19^4=-37=7\left(mod44\right)\)
\(69^5=11\left(mod44\right)\Rightarrow69^{69}=1^{13}.69^4=37\left(mod44\right)\)
=> \(19^{19}+69^{69}=7+37=0\left(mod44\right)\)
vậy chia hết cho 44
Cách 2:
Ta có: \(A=69^{69}+19^{19}=\left(69^{69}+19^{69}\right)-\left(19^{69}-19^{19}\right)\)
Ta có: \(69^{69}+19^{69}⋮\left(19+69\right)\Rightarrow69^{69}+19^{69}⋮44\)
Phải CM \(19^{69}-19^{19}⋮44\), Thật vậy
\(B=19^{19}\left(19^{50}-1\right)\)
do 19 lẻ nên \(19^2=1\left(mod4\right)\)\(\Rightarrow19^{50}=1\left(mod4\right)\Rightarrow19^{50}-1⋮4\)
Có: \(19^{50}=8^{50}\left(mod11\right)\)mà
\(8^5=1\left(mod11\right)\Rightarrow8^{50}=1\left(mod11\right)\Leftrightarrow19^{50}=1\left(mod11\right)\Rightarrow19^{50}-1⋮11\)
Mà (4,11)=1
=> \(19^{69}-19^{19}⋮44\)
=> A chia hết cho 44 (ĐPCM)
(19^9) mod 44=0 suy ra 19^19 chia het cho 44
(69^6) mod 44=0 suy ra 69^69 chia het cho 44
suy ra .....19^19+69^69 chia het cho 44
Nếu trong x;y có 1 số chia hết cho 3(Hoặc cả hai số chia hết cho 3) thì 75xy chia hết cho 9 hiển nhiên đúng
Nếu x;y đều không chia hết cho 3 thì ta có: số chính phương chia 3 dư 0 hoặc 1
Mà x2;y2 không chia hết cho 3 nên x2;y2 chia 3 dư 1, suy ra \(x^2-y^2⋮3\)
\(\Rightarrow75xy\left(x^2-y^2\right)⋮9\)
Phần chia hết cho 5 dễ rồi mk ko làm nx
Xét 75xy chia hết cho 45
<=> 75xy chia hết cho 5 và 9
- Để 75xy chia hết cho 5 <=> y = 0 và 5
- Để 75x0 chia hết cho 9 <=> 7+5+x+0 = 12+x chia hết cho 9
<=> x = 6
- Để 75x5 chia hết cho 9 <=> 7+6+x+5 = 17+x chia hết cho 9
<=> x = 1
Thử lại: Thay x = 6; y = 0 được: 7560 x (62-02) = 272160 chia hết cho 45
Thay x = 1; y = 5 được: 7515 x (12 - 52) = -180360 chia hết cho 45
P/s: K biết đúng k, làm theo cách hiểu
\(68^{n+1}\)- \(68^n\)
= \(68^n\). 68 - \(68^n\)
= \(68^n\)( 68 - 1 )
= \(68^n\). 67
Vậy \(68^{n+1}\)- \(68^n\)chi hết cho 54 ( n thuộc N )
:v ghi cái đề bài cũng sai
Ta có \(68^{n+1}-689=68^n.68-68=68.\left(68^n-1\right)=68.\left(68^n-1^n\right)\)
\(=68.\left(68-1\right).\left(68+1\right)=68.67.69=67.68.69\)
Vì \(67⋮67\)nên \(67.68.69⋮67\)hay \(68^{n+1}-68\)chia hết cho \(67\)
Vậy \(68^{n+1}-68⋮67\)
\(69^2-69.5=69.69-69.5=69.\left(69-5\right)=69.64=69.2.32\)