K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

#NoComment

16 tháng 8 2017

\(68^{n+1}\)\(68^n\)

\(68^n\).  68  -  \(68^n\)

\(68^n\)(  68 - 1 )

=   \(68^n\).   67 

Vậy  \(68^{n+1}\)-   \(68^n\)chi hết cho 54 ( n thuộc N )

:v ghi cái đề bài cũng sai
 

17 tháng 8 2017

Ta có \(68^{n+1}-689=68^n.68-68=68.\left(68^n-1\right)=68.\left(68^n-1^n\right)\)

\(=68.\left(68-1\right).\left(68+1\right)=68.67.69=67.68.69\)

Vì \(67⋮67\)nên \(67.68.69⋮67\)hay \(68^{n+1}-68\)chia hết cho \(67\)

Vậy \(68^{n+1}-68⋮67\)

17 tháng 8 2017

:v forever alone

10 tháng 7 2018

Ta có :

\(68^{n+1}-68^n=68^n\left(68-1\right)=67.68^n⋮67\) (đpcm )

18 tháng 8 2021

Trả lời:

a, A = 18x10yn và B = - 6x7y3 

Để đa thức A chia hết cho đa thức B thì \(n\ge3\)

b, A = - 12x8y2nzn-1 và B = 2x4ynz1 

Để đa thức A chia hết cho đa thức B thì \(\hept{\begin{cases}2n\ge n\\n-1\ge1\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge0\\n\ge2\end{cases}\Leftrightarrow}\hept{n\ge2}}\)

Vậy để A chia hết cho B thì \(n\ge2\)

31 tháng 7 2017

Với 2 số

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Đẳng thức xảy ra  \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

Với 3 số

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Đẳng thức xảy ra  \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

31 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(\frac{3}{a+2b}+\frac{3}{b+2a}=3\left(\frac{1}{a+2b}+\frac{1}{b+2a}\right)\ge\frac{3.\left(1+1\right)^2}{a+2b+b+2a}=\frac{3.4}{3\left(a+b\right)}=\frac{4}{a+b}\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b\)

15 tháng 11 2023

   2\(x^2\)y2 - 6\(\sqrt{2}\)\(xy\) + 9

= (\(\sqrt{2}\).\(x.y\))2 - 2.\(\sqrt{2}\)\(xy\).3 + 32

= (\(\sqrt{2}\)\(xy\)  - 3)2

22 tháng 9 2021

1) \(2x\left(x-5\right)+\left(x-2\right)\left(x+3\right)=2x^2-10x+x^2+3x-2x-6=3x^2-9x-6\)

2) \(\left(2x-5\right)\left(1-x\right)-\left(x-3\right)\left(-2x\right)=2x-2x^2-5+5x+2x^2-6x=x-5\)

3) \(\left(4x-3\right)\left(4x-3\right)-\left(3x+2\right)\left(3x-2\right)=\left(4x-3\right)^2-9x^2+4=16x^2-24x+9-9x^2+4\)

\(=7x^2-24x+13\)

4) \(\left(2x-1\right)\left(2x+1\right)\left(2x+1\right)-4\left(x^2+1\right)=\left(2x-1\right)[\left(2x+1\right)^2]-4x^2-4\)

\(=\left(2x-1\right)\left(4x^2+4x+4\right)-4x^2-4=8x^3+8x^2+8x-4x^2-4x-4-4x^2-4=8x^3+4x-8\)

22 tháng 9 2021

5) \(3x\left(2x-8\right)-\left(2-6x\right)\left(5+x\right)=6x^2-24x-10-2x+30x+6x^2=12x^2+4x-10\)

6) \(x\left(3x-18\right)-3\left(x-4\right)\left(x-2\right)+8=3x^2-18x-3x^2+6x+12x-24+8=-16\)

7) \(\left(x+2\right)\left(x^2-2x+4\right)-x^2\left(x-2\right)-2x^2=x^3+8-x^3+2x^2-2x^2=8\)

24 tháng 3 2021

A B C 4 6 M N P

a, giả sử MN // BC 

theo đinh lí Ta lét ta có : \(\frac{AN}{NC}=\frac{AM}{MB}=\frac{1}{3}=\frac{1,5}{4,5}\) 

Vậy MN // BC ( đpcm )

b, Xét tam giác AMN và tam giác ABC ta có : 

^A chung 

\(\frac{AN}{NC}=\frac{AM}{MB}\)( cmt )

Vậy tam giác AMN ~ tam giác ABC ( c.g.c ) (1)

Xét tam giác NPC và tam giác ABC ta có : 

^C chung 

\(\frac{NC}{NA}=\frac{CP}{PB}\)( PN // AB, theo định lí Ta lét )

Vậy tam giác NPC ~ tam giác ABC ( c.g.c ) (2)

Từ (1) ; (2) suy ra : tam giác AMN ~ tam giác NPC