K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Cho $n=1$ thì $A$ không chia hết cho $59$. Bạn xem lại đề nhé.

14 tháng 10 2018

Vì n và n + 1 là 2 STN liên tiếp nên đa thức có dạng:

      \(\left(x^{2k}-1\right)\left(x^{2k+1}-1\right)\)

\(=\left(x^2-1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)

\(=\left(x-1\right)\left(x+1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)

\(=\left(x+1\right)\left(x-1\right)^2P\left(x\right)Q\left(x\right)⋮\left(x+1\right)\left(x-1\right)^2\)

13 tháng 4 2020

Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\) 

+) vì n ( n - 1) chia hết cho 2 và (n - 1) n ( n+1 ) chia hết cho 3

=> n ( n - 1 ) ( n + 1 ) chia hết cho 6 

nên \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)

+) Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\) và \(5n\left(n-1\right)\left(n+1\right)⋮5\)

=> \(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)

Mà ( 5; 6 ) = 1 và 5.6 = 30 

=> \(n^5-n⋮30\) với mọi số tự nhiên n 

=> \(\left(2^{3n+1}+2^n\right)\left(n^5-n\right)⋮30\) với mọi số tự nhiên n