Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(A=5^n\left(5^2+26\right)+\left(8^2\right)^n.8\)
\(A=5^n.51+64^n.8\)
\(A=5^n.59-5^n.8+64^n.8\)
\(A=5^n.59+8.\left(-5^n+64^n\right)\)
Ta có: \(\left(5^n.59\right)⋮59\left(1\right)\)
mà \(\left(-5^n+64^n\right)\) luôn chia hết cho \(\left(-5+64\right)=59\Leftrightarrow8.\left(-5^n+64^n\right)⋮59\left(2\right)\)
Từ (1)(2)⇒ A\(⋮\)59
a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc
Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)
\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)
\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)
Vì \(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133
Mà 11n.133 cũng chia hết cho 133
=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)
b,\(5^{n+2}+26.5^n+8^{2n+1}\)
\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)
\(=59.5^n+8.\left(64^n-5^n\right)\)
Vì \(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59
Mà 59.5n cũng chia hết cho 59
=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)
\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)
Cho $n=1$ thì $A$ không chia hết cho $59$. Bạn xem lại đề nhé.