K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

CHỨNG MINH .................... CHIA HẾT CHO 32 :

692-69.5=69.(69.5)

=69.64=69.2.32 CHIA HẾT CHO 32 (DPCM)

CHỨNG MINH .............. CHIA HẾT CHO 14:

(817-218)=8(218)-218=7.218=14.217

=> DPCM

17 tháng 6 2017
  • (692+69 x 5)=(69x23x3+23x3x5)=(69x3+3x5)x23 chia hết cho 23 nha ko chia het cho 32 dc
  • 87-218=(23)7-218=23x7-218=221-218=217x(24-2)=217x14 chia hết cho 14
12 tháng 8 2018

5^6+5^7+5^8

=5^6.(1+5+5^2)

=5^6.31 chia hết cho 31

7^6+7^5-7^4

=7^4.(7^2+7-1)

=7^4.55 chia hết cho 11

12 tháng 8 2018

BÀI 2:

a)  \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\)      \(⋮\)\(31\)

b)  \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)

c)  \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)

d) mk chỉnh đề

 \(1+2+2^2+2^3+...+2^{59}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)

\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)

4 tháng 8 2017

a)A=5+52+53+...+58

A= (5+52)+(53+54) + ... + (57+58)

A= 5( 1+5) + 52(5+52)+... + 56(5+52)

A= 30 + 52 . 30 + ... +56.30

A = 30 ( 1 + 52+...+56) chia hết cho 30

=> A chia hết cho 30

4 tháng 8 2017

b)B=3+33+35+37+...+329 

B = (3 + 33 + 35) + (37+39+311) + ... + ( 327+328+329)

B = 273 + 36 (3 + 33 + 35) + ... + 326 (3 + 33 + 35

B = 273 + 36.273 + ... + 326.273

B = 273 ( 1 + 36+...326) chia hết cho 273

=> B chia hết cho 273

10 tháng 11 2017

A = (2+2^2)+(2^3+2^4)+....+(2^59+2^60)

   = 2.3 + 2^3.3 + .... + 2^59 .3 = 3.(2+2^2+....+2^59) chia hết cho 3

A = (2+2^2+2^3)+(2^4+2^5+2^6)+.....+(2^58+2^59+2^60)

   = 2.7 + 2^4.7 + .... +2^58.7 = 7.(2+2^4+....+2^58) chia hết cho 7

Dễ thấy A chia hết cho 2 mà lại có A chia hết cho 3;7 ( cm trên )

=> A chia hết cho 2.3.7 = 42 ( vì 2;3;7 là 2 số nguyên tố cùng nhau ) 

15 tháng 11 2017

ko có cơ sở

19 tháng 8 2019

a, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)

\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)

\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)

b, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)

\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)

\(M=6\cdot259+...+6^{96}\cdot259\)

\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)

Vậy \(M⋮259(đpcm)\)

23 tháng 1 2017

A=2x(1+2)+23x(1+2)+...+259x(1+2)

=2x3+23x3+...+259x3

=3x(2+23+...+259) chia hết cho 3

vậy A chia hết cho 3

10 tháng 6 2016

Nếu số có đơn vị là 1 thì lũy thừa bao nhiêu đơn vị vẫn là 1.

Các số chia hết cho 5 có đơn vị là 5 hoặc 0

tính tổng các đơn vị: 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 10 (đơn vị là 0)

Vậy số A chia hết cho 5

31 tháng 10 2015

a)Ta có: p2-1=(p-1).(p+1)

Vì p là số nguyên tố lớn hơn 3

=>p chia 3 dư 1 hoặc 2

*Xét p chia 3 dư 1=>p-1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3

=>p2-1 chia hết cho 3

*Xét p chia 3 dư 2=>p+1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3

=>p2-1 chia hết cho 3

Vậy p2-1 chia hết cho 3

a)Ta có: p2-q2=p2-1-q2+1=(p2-1)-(q2+1)

Từ câu a

=>p2-1 chia hết cho 3

    q2-1 chia hết cho 3

=>(p2-1)-(q2+1) chia hết cho 3

Vậy p2-q2 chia hết cho 3

24 tháng 8 2015

25.15-26=25.15-25.2=25.(15-2)=25.13 chia hết cho 13

=>ĐPCM