Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2ac+2bc\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\)hoặc (a - b)2=0 hoặc (b - c)2=0 hoặc (c - a)2=0 \(\Leftrightarrow\)a - b = 0 hoặc b - c = 0 hoặc c - a = 0\(\Leftrightarrow\)a = b; b = c; c = a (1)
Từ (1)
\(\Rightarrow\)a = b = c
nói hoặc là sai rồi vì 3 trường hợp này xảy ra trong 1 đẳng thức
nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0
luôn đúng với mọi a;b;c
suy ra ĐPCM
ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)
<=> \(a^2+b^2+c^2\ge ab+bc+ca\)
b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0
=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)
\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)
\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)
=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)
Dấu '= xảy ra khi a=b=c (đpcm)
Áp dụng bất đẳng thức tam giác ta có :
\(\Rightarrow\left\{{}\begin{matrix}b+c>a\\a+c>b\\a+b>c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab+ac>a^2\\ba+bc>b^2\\ca+cb>c^2\end{matrix}\right.\)
Cộng vế theo vế ta được : 2 (ab + ac + bc ) > a2 + b2 + c2
Áp dụng BĐT tam giác ta được:
a + b > c
b + c > a
a + c > b
Suy ra: ac + bc > c^2 (1)
ab + ac > a^2 (2)
ab + bc > b^2 (3)
Lấy (1) + (2) + (3) ta được:
a^2 + b^2 + c^2 < 2(ab + bc + ca) (đpcm)
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
(a - b)2 + (b - c)2 + (c - a)2 = 3(a2 + b2 + c2 - ab - bc - ca)
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)(2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca)
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)[(a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2)]
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)[(a - b)2 + (b - c)2 + (c - a)2]
<=> \(\dfrac{1}{2}\)[(a - b)2 + (b - c)2 + (c - a)2] = 0
<=> a = b = c
Cách 2 :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Ta có: \(a^2 + b^2 + c^2 = ab + ac + bc \)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 = 2ab + 2ac + 2bc\)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2ab -2ac - 2bc = 0\)
\(\Leftrightarrow (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc +c^2) = 0\)
\(\Leftrightarrow (a - b)^2 + (a-c)^2 + (b-c)^2 = 0\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) \(\Leftrightarrow\) \(a=b=c\)