K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

b) Giải:

Đặt \(A=n^3+3n^2-n-3\) ta có

\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Thay \(n=2k+1\left(k\in Z\right)\) ta được:

\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)

\(=8\left(k+1\right)k\left(k+2\right)\)

\(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)

Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)

Cảm ơn bạn rất nhiều! thanghoa

9 tháng 6 2016

\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)

\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)

\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)

Ta có:

  • \(-6\left(2m+5\right)\)chia hết cho 6 với mọi m.
  • \(3m\left(3m-1\right)\)chia hết cho 6 với mọi m (Vì 3m và 3m-1 là 2 số tự nhiên liên tiếp nên tích chia hết cho 2 và 3m chia hết cho 3).
  • \(4m\left(m-1\right)\left(m+1\right)\)chia hết cho 6 vì \(m\left(m-1\right)\left(m+1\right)\)là tích của 3 số tự nhiên liên tiếp.

A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).

22 tháng 1 2018

Nếu m có dạng 3k thì m+3 chia hết cho 3, nếu m có dạng 3k-1 thì m-2 chia hết cho 3 

27 tháng 12 2016

4n+2 -3n+2 - 4n - 3n 

= 4n+2 - 4n - 3n+2 - 3n 

= 4n ( 42 - 1 ) - 3n ( 32 + 1 )

= 4n .15 - 3n.10

= 4n-1.4.15 - 3n-1.3.10

= 4n-1.60 - 3n-1.30

= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )

25 tháng 2 2017

3n+2-2n+2+3n-2n

=(3n+2+3n)-(2n+2+2n)

=3n(32+1)-2n(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10(3n-2n-1)chia hết cho 10

25 tháng 2 2017

k lại cho mình đi

12 tháng 12 2016

đây là toán lớp mấy vậy

12 tháng 12 2016

Muốn vip à 

14 tháng 2 2018

\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)

\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)

\(=6.3^{n+1}+6.2^{n+1}\)

\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)