K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

a)\(A=n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)

\(=\left(n^4-n^2-4n^2+1\right)n\)

\(=\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]n\)

\(=\left(n^2-4\right)\left(n^2-1\right)n\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)

Điều cuối đúng hay ta có ĐPCM

b)Gọi 4 số tự nhiên liên tiếp đó lần lượt là \(a;a+1;a+2;a+3 (a;a+1;a+2;a+3 \in N)\)

Ta có;

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)

\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

Đặt \(a^2+3a=t\) thì ta có:

\(=t\left(t+2\right)+1=t^2+2t+1\)

\(=\left(t+1\right)^2=\left(a^2+3a\right)^2\) là số chính phương

Hay ta cũng có ĐPCM

4 tháng 11 2016

A=n5-5n3+4n

 =n(n4-5n2+4)

 =n(n4-4n2-n2+4)

 =n[n2(n2-1)-4(n2-1)]

 =n(n2-4)(n2-1)

 =n(n-1)(n+1)(n+2)(n-2)

A là tích 5 số tự nhiên liên tiếp nên A chia hết cho 5

A có 1 số chia hết cho 3 nên A chia hết cho 3

A là tích 2 số chẵn liên tiếp nên A chia hết cho 8

Suy ra: A chia hết cho (3;5;8)

Suy ra: A chia hết cho 120

Suy ra: n5-5n3+4n chia hết cho 120

20 tháng 10 2019

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8

4 tháng 9 2016

Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22

                              = (5n + 2 - 2)(5n + 2 + 2)

                               = 5n(5n + 4)

Vì 5  5 nên 5n(5n + 4)  5 ∀n ∈ Z.

9 tháng 8 2017

Gọi A= n^5-5n^3+4n 

Ta có : n^5-5n^3+4n

=n(n^4-5n^2+4)

=n(n^4-4n^2-n^2+4)

=n{(n^2-4)(n^2-1)}

= n(n+1)(n-1)(n+2)(n-2)           

Vì A là 5 số tự nhiên liên tiếp nên A chia hết cho cả 2,3,4,5. Mà 2.3.4.5=120

=>A chia hết cho 120        

20 tháng 10 2019

Tiếp câu b nha

\(A=\frac{n^5}{120}+\frac{n^4}{10}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)

\(=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

Ta có:\(n^5+10n^4+35n^3+50n^2+24n\)

\(=n\left(n^4+10x^3+35x^2+50x+24\right)\)

\(=n\left(n^4+2n^3+8n^3+16n^2+19n^2+38n+12n+4\right)\)

\(=n\left(n+3\right)\left(n^3+3n^2+5n^2+15n+4n+12\right)\)

\(=n\left(n+2\right)\left(n+3\right)\left(n+4n+n+4\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3;5;8\)

\(ƯC\left(3;5;8\right)=1\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Vậy A chia hết cho 120

20 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)=8\left(n+1\right)⋮8\forall n\in\mathbb{N}\) (đpcm)

b) Thử quy đồng hết lên đi (MSC = 12) rồi phân tích tiếp xem, đang bận ...