\(^5\) + 5n\(^3\) + 4 chia hết cho 12...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

a) 3x+2(x-5)=-x+2

<=> 3x+2x+x=2+10

<=>6x=12

<=>x=2

b) 3x2-2x=0

<=>x(3x-2)=0

<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)

<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)

<=> 8x+2x-8=24-6x

<=>8x+2x+6x=24+8

<=>16x=32

<=>x=2

d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)

<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)

=> (x-2)2-3(x+2)=2(x-11)

<=> x2-4x+4-3x-6=2x-22

<=> x2-4x-3x-2x=-22-4+6

<=> x-9x+20=0

<=> (x-4)(x-5)=0

<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )

d) (x2+1)(x2-4x+4)=0

=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)

=>(x-2)2 =0

=>x=2

20 tháng 3 2017

Cảm ơn bạn nhăn Ngọc Vô Tâm

a: \(a^4+6a^3+11a^2+6a\)

\(=a\left(a^3+6a^2+11a+6\right)\)

\(=a\left(a^3+a^2+5a^2+5a+6a+6\right)\)

\(=a\left(a+1\right)\left(a^2+5a+6\right)\)

\(=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

Vì a;a+1;a+2;a+3 là bốn số liên tiếp

nên \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮4!\)

hay \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮24\)

b: \(a^5-5a^3+4a\)

\(=a\left(a^4-5a^2+4\right)\)

\(=a\left(a^2-4\right)\left(a^2-1\right)\)

\(=a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)\)

Vì a;a-2;a+2;a-1;a+1 là 5 số liên tiếp

nên \(a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)⋮5!\)

hay \(a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)⋮120\)

5 tháng 9 2016

10,5

5 tháng 9 2016

10,5

 

13 tháng 4 2017

a) ko chia hết đâu bạn xem lại nhá

b)19^19+69^19=(19+69)(19^18+19^17.69+...+19.69^17+69^18=88(....) (đây là hđt mở rộng bạn xem thêm ở đây Đại số/Hằng đẳng thức đại số – Wikibooks tiếng Việt)

chia hết cho 88 mà 88 chia hết cho 44 => 19^19+69^19 chia hết cho 44

a: \(x^2-10x+26+y^2+2y=0\)

\(\Leftrightarrow x^2-10x+25+y^2+2y+1=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(y+1\right)^2=0\)

=>x=5 hoặc y=-1

b: \(x^2-6x+13+y^2+4y=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=0\)

=>x=3 và y=-2

9 tháng 11 2017

Gọi T(n) là mệnh đề cần chứng minh

*n=1 thì ta có: \(=10^1+18.1-28=0⋮27\). Vậy T(1) đúng

Giả sử T(k) đúng thì \(10^k+18k-28⋮27\)

Chứng minh T(k+1) đúng tức là chứng minh

\(10^{k+1}+18\left(k+1\right)-28⋮27\)

Ta có: \(10^{k+1}+18\left(k+1\right)-28=10^k.10+18k-10\)

Ta có: \(10^k+18k-28=27n\)(do chia hết cho 27)

\(\Rightarrow10^k=27n-18k+28\)

\(10^{k+1}+18\left(k+1\right)-28=10.\left(27n-18k+28\right)+18k-10\)

\(=27\left(10n-6k+10\right)⋮27\)

Vậy T(k+1) đúng

Theo nguyên lý quy nạp ta suy ra điều phứn chứứng minh

9 tháng 11 2017

C1: 10^n + 18n - 28 = (10^n - 9n -1) + (27n - 27)
Ta có: 27n - 27 chia hết cho 27 (1)
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm)

C2: *Với n=1, ta có: 10 + 18 - 28 = 0 chia hết cho 27.
Giả sử n=k, ta có: 10^k + 18k - 28 chia hết cho 27.
=> 10^k + 18k - 28 = 27m (m là số nguyên)
=> 10k = 27m -18k + 28 (1)
*Với n=k+1, ta có: 10^k+1 + 18(k+1) - 28 = 10.10^k + 18k - 10 (2)
Thay (1) vào (2), ta được:
10^k+1 + 18(k+1) - 28 = 10 (27m - 18k + 28) + 18k - 10 = 270m - 162k + 270 chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27 với n thuộc N*.(đpcm

21 tháng 12 2018

a) (n + 2)2 - (n - 2)2

= (n + 2 - n + 2)(n + 2 + n - 2)

\(=8n⋮8(\forall n\in Z)\)

b) (n + 7)2 - (n - 5)2

= (n + 7 - n + 5)(n + 7 + n - 5)

= 12.(2n + 2)

= \(24\left(n+1\right)⋮24\left(\forall n\in Z\right)\)