Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề như này đúng chưa ạ?: (x-2)(x2 + 2x+4) - 128 + x3
=x3 - 23 - 128 + x3
= 2x3 -136
( x - 2 )( x - 4 ) + 3
<=> x2 - 6x + 8 + 3
<=> ( x2 - 6x + 9 ) + 2
<=> ( x - 3 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-10\right)^2+1>1>0\)
Vậy x2-20x+101 >0 với mọi x
b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)
Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)
\(\Rightarrow\left(2a+1\right)^2+1>1>0\)
Vậy 4a2+4a+2 > 0 với mọi a
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)
\(a^4+a^3+a+1\)
\(=\left(a^4+a^3\right)+\left(a+1\right)\)
\(=a^3\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^3+1\right)\)
\(=\left(a+1\right)^2\left(a^2-a+1\right)\)
\(=\left(a+1\right)^2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]\) \(\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=-1\)
\(P=x^2-4x+2x-8+9,5=x^2-2x+1-9+9,5=\)
\(=\left(x-1\right)^2+0,5>0\forall x\)
Ta có : x2 >= 0 mà x =< x2 => x-x2 =< 0
Vậy x-x2 -1 =< -1 => x-x2 -1 < 0
Ta có : x2 >= 0 mà x =< x2 => x2 -x >= 0
Vậy x2 -x + 3/4 >= 3/4 => x2 -x + 3/4 > 0
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(4x^2-4x+3\)
\(=\left(4x^2-4x+1\right)+2\)
\(=\left(2x+1\right)^2+2>0\)với mọi x
vậy \(4x^2-4x+3>0\)với mọi x
\(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\)
Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow4x^2-4x+3\ge2\forall x\)
hay \(4x^2-4x+3>0\forall x\)