K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Gọi d \(\inƯ\left(2n+3,4n+8\right)\)

Ta có : \(2n+3⋮d\)\(\Rightarrow4n+6⋮d\)

            \(4n+8:d\)\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)=2⋮d\Leftrightarrow d\inƯ\left(2\right)\)

Mà \(2n+3\)không chia hết cho 2 nên \(d\inƯ\left(1\right)\)và d \(\in\left(-1;1\right)\)

VẬY 2n+3/4n+8 tối giản

 

17 tháng 2 2016

Gọi UCLN(2n+3,4n+8)=d

Ta có:2n+3 chia hết cho d

4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

4n+8 chia hết cho d

=>4n+6 chia hết cho d

4n+8 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

=>2 chia hết cho d

=>d=1,2

Mà 2n+3 là số lẻ nên không chia hết cho 2

=>d=1

Vậy phân số \(\frac{2n+3}{4n+8}\) tối giản

17 tháng 2 2016

Bạn nên đọc lại định nghĩa về phân số tối giản

Giải như bạn trên mém đúng

ở chổ 2 chia hết cho d

=> d thuộc Ư(2)

=>d thuộc {-2;-1;1;2}

Vì 2n + 3 là số lẻ, 4n + 8 la số chẳn nên ước chung của 2 số này phải là số lẻ

=> d thuộc {-1;1}

Vì 2n + 3 và 4n + 8 chỉ có ước chung là -1,1 nên phân số 2n+3 / 4n + 8 tối giản

20 tháng 2 2020

\(\frac{n+1}{2n+3}\)\(\frac{2\left(n+1\right)}{2n+3}\)\(\frac{2n+2}{2n+3}\)\(\frac{2n+3-1}{2n+3}\)=\(-\frac{1}{2n+3}\)

=> 2n+3 thuộc Ư(-1) ={ 1; -1}

Vậy...

Ko chắc nha

6 tháng 4 2017

gọi d là ƯCLN(5n+1;6n+1)

=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d

=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d

=>(30n+6)-(30n+5)chia hết cho d

=> 1 chia hết cho d

=> d= 1

=>5n+1 và 6n+1 là hai snt cùng nhau

Vậy phân số 5n+1/6n+1 là phân số tối giản

28 tháng 4 2019

cho d là UCLL của \(\frac{2n+3}{4n+8}\)

=)\(\left(4n+8\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-4n+6⋮d\)

\(\Rightarrow2⋮d\)\(\Rightarrow2=d\)

Mà 2n+3 là số lẻ =) d=1

Vậy\(\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số TN n

28 tháng 4 2019

Gọi ước chung lớn nhất của \(2n+3\)và \(4n+8\)là d 

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)\)\(⋮\)\(d\)

\(\Rightarrow4n+8-4n-6\)\(⋮\)\(d\)

\(\Rightarrow2\)\(⋮\)\(d\)

Mà \(2n+3\)không chia hết cho 2 

\(\Rightarrow1\)\(⋮\)\(d\)

\(\Rightarrow\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n

1 tháng 4 2018

a) Gọi d là ƯCLN (n+1;2n+5)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+5\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow3⋮d\Rightarrow d\in\left\{1;3\right\}\)

Mà 2n+2 ko chia hết cho 3

=>d=1

Vậy......

b)Gọi d là ƯCLN(2n+3;2n+8)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 ko chia hết cho 2

\(\Rightarrow d=1\)

Vậy.......

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d

=> 4n+8-(4n+6) chia hết cho d

=> 4n+8-4n-6 chia hết cho d

=> 2 chia hết cho d

=> d E {1;2}

Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1

=> ƯCLN(2n+3,4n+8)=1

Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
          4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

:D

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.