Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN ( 2n + 3 ; 4n + 8 ) là d ( \(d\inℕ^∗\))
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)=> \(\hept{\begin{cases}2.\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
=> \(\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> \(\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(4n+8-4n-6⋮d\)
\(2⋮d\)
=> \(d\in\left\{1;2\right\}\)( vì \(d\inℕ^∗\))
Mà 2n + 3 là số lẻ \(\forall n\inℕ\)
=> d = 1
=> \(\frac{2n+3}{4n+8}\)là phân số tối giản
Vậy \(\frac{2n+3}{4n+8}\)là phân số tối giản
Gọi d = ƯC ( 2n + 3 , 4n + 8 )
Xét hiệu :
\(\left(4n+8\right)-\left(2n+3\right)⋮d\)
\(4n+8-2\left(2n+3\right)⋮d\)
\(4n+8-4n-6⋮d\)
\(2⋮d\rightarrow d\inƯ\left(2\right)\)
Ư(2) = { 1 , 2 }
\(d\ne2\)vì \(2n+3⋮̸\)3
\(\rightarrow d=1\)
Vậy...
\(#Hoqchac-Cothanhkhe\)
Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\) là phân số tối giảm (đpcm)
Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\) là phân số tối giảm (đpcm)
:D
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
Giả sử phân số sau chưa tối giản
\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\)
Vậy d có thể = 2
Vậy p/s sau vẫn có thể tối giản đc
Giả sử ƯCLN (2n+3;4n+8)=d
\(\Rightarrow4n+8⋮d\)mà\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)
\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)
Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì số tư nhiên n
Chú bạn hok tốt
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d=1;2\)
\(+d=2\Rightarrow2n+3⋮2\)
Mak 2n+3 ko chia hết cho 2
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\Rightarrowđpcm\)
Gọi d=ƯCLN(2n+3;4n+8)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)
=>\(2⋮d\)
mà 2n+3 lẻ
nên d=1
=>ƯCLN(2n+3;4n+8)=1
=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2
cho d là UCLL của \(\frac{2n+3}{4n+8}\)
=)\(\left(4n+8\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)
\(\Rightarrow4n+8-4n+6⋮d\)
\(\Rightarrow2⋮d\)\(\Rightarrow2=d\)
Mà 2n+3 là số lẻ =) d=1
Vậy\(\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số TN n
Gọi ước chung lớn nhất của \(2n+3\)và \(4n+8\)là d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)\)\(⋮\)\(d\)
\(\Rightarrow4n+8-4n-6\)\(⋮\)\(d\)
\(\Rightarrow2\)\(⋮\)\(d\)
Mà \(2n+3\)không chia hết cho 2
\(\Rightarrow1\)\(⋮\)\(d\)
\(\Rightarrow\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n