K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Giả sử phân số \(\dfrac{2n+4}{n^2+4n+3}\) chưa tối giản

\(\Rightarrow2n+1;n^2+4n+3\) có ước chung là số nguyên tố

Gọi số nguyên tố d là \(ƯC\left(2n+4;n^2+4n+3\right)\) \(\)(\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}2n+4⋮d\\n^2+4n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2n^2+4n⋮d\\2n^2+8n+6⋮d\end{matrix}\right.\)

\(\Rightarrow4n+6⋮d\)

\(2n+4⋮d\)

\(\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow2⋮d\)

\(d\in N\)*; \(2⋮d\Rightarrow d=1;2\)

Đến đây thì bó tay ồi!!

Vì thức tế phân số này ko thể nào tối giản với mọi số nguyên n được!!

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

5 tháng 4 2017

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm

14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản

28 tháng 4 2019

cho d là UCLL của \(\frac{2n+3}{4n+8}\)

=)\(\left(4n+8\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-4n+6⋮d\)

\(\Rightarrow2⋮d\)\(\Rightarrow2=d\)

Mà 2n+3 là số lẻ =) d=1

Vậy\(\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số TN n

28 tháng 4 2019

Gọi ước chung lớn nhất của \(2n+3\)và \(4n+8\)là d 

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)\)\(⋮\)\(d\)

\(\Rightarrow4n+8-4n-6\)\(⋮\)\(d\)

\(\Rightarrow2\)\(⋮\)\(d\)

Mà \(2n+3\)không chia hết cho 2 

\(\Rightarrow1\)\(⋮\)\(d\)

\(\Rightarrow\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n

16 tháng 8 2018

Giả sử phân số sau chưa tối giản

\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\)

Vậy d có thể = 2 

Vậy p/s sau vẫn có thể tối giản đc

16 tháng 8 2018

Giả sử ƯCLN  (2n+3;4n+8)=d

\(\Rightarrow4n+8⋮d\)\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)

\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)

Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì  số tư nhiên n

Chú bạn hok tốt

20 tháng 2 2020

\(\frac{n+1}{2n+3}\)\(\frac{2\left(n+1\right)}{2n+3}\)\(\frac{2n+2}{2n+3}\)\(\frac{2n+3-1}{2n+3}\)=\(-\frac{1}{2n+3}\)

=> 2n+3 thuộc Ư(-1) ={ 1; -1}

Vậy...

Ko chắc nha