Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\) và x+y=2
Xét dấu =
Dấu ''='' xảy ra khi và chỉ khi
x=y=1
Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1
Hết.
Em mới học lớp 7 nên ko biết đúng ko
\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)
\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)
\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)
\(\Rightarrow x\ge y\)
Vậy với \(x\ge y\Rightarrowđpcm\)
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)
\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)
\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)
\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)
\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)
Đến đây dễ rồi bạn tự làm tiếp nhê
\(x^2+y^2+2x+2y+2=0\)
<=> \(\left(x+1\right)^2+\left(y+1\right)^2=0\)
<=> \(\hept{\begin{cases}x+1=0\\y+1=0\end{cases}}\)
<=> \(x=y=-1\)
\(Q=\left(-1+2\right)^{2017}+\left(-1+2\right)^{2018}=2\)
Ta có: \(x^2+y^2+2x+2y+2=0\)
\(\left(x^2+2.x.1+1^2\right)+\left(y^2+2.y.1+1^2\right)=0\)
\(\left(x+1\right)^2+\left(y+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Mà \(\left(x+1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
\(Q=\left(x+2\right)^{2017}+\left(y+2\right)^{2018}\)
\(Q=\left(-1+2\right)^{2017}+\left(-1+2\right)^{2018}\)
\(Q=1^{2017}+1^{2018}\)
\(Q=1+1\)
\(Q=2\)
Vậy \(Q=2\)
Tham khảo nhé~