Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cm: Tam giác BEC = Tam giác CDB (cạnh huyền - góc nhọn) => BD = CE
b) Từ a, => BE = CD => Tam giác OBE = Tam giác OCD ( góc nhọn - cạnh góc vuông)
c) O là trực tâm tam giác ABC => AO vuông góc BC. Mà ABC cân tại A => AO là phân giác góc BAC
cho mình nhé!
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
(Bạn tự vẽ hình nha!)
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:
AB=AC (gt)
A là góc chung
Do đó, ............... (ch-gn)
=> BD=CE (2 cạnh tương ứng)
b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2
Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2
Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:
BD=CE (cmt)
B2= C2 (cmt)
Do đó,.......... (ch-gn)
=> BE=DC (2 cạnh tương ứng)
Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:
BE= DC (cmt)
B1 = C1 (cmt)
Do đó tam giác OBE= tam giác OCD (cgv-gnk)
c) Ta có: AB=AC (gt) => AE+EB= AD+DC
Mà BE=DC (cmt) nên AE=AD
Xét tam giác ADO và tam giác AEO có:
EO=OD ( vì tam giác OBE= tam giác OCD)
AE=AD (cmt)
AO là cạnh chung
Do đó,.................(c.c.c)
=> A1= A2 ( 2 góc tương ứng)
=> AO là tia phân giác góc A
Vậy AO là tia phân giác góc BAC.
A B C E D O xét Δ ABC có AB=AC(gt)
=> ΔABC cân tại A
Xét tam giác vuông BDC và tam giác vuông CEB có
BC cạnh chung
góc BCD = góc CBE ( Δ ABC cân cmt)
=> Δ BDC= ΔCEB ( chgn)
=> BD=CE (cctư)
b) ta có Δ BDC= ΔCEB (cmt)
=> EB=DC (cctư)
mặt khác ta có
góc DOC + góc OCD =90o (1)
góc EOB + góc OBE = 90o (2)
mà góc DOC = góc EOB (đđ) (3)
(1),(2)&(3) => góc DCO = góc EBO
Xét Δ vuông OEB và Δ vuông ODC có
EB=DC(cmt)
góc DCO = góc EBO
=> Δ OEB = Δ ODC ( cgvgnk)
C) Xét tam giác ABC có
BD cắt CE tại O
mà BD là đường cao
CE là đường cao
=> O là trực tâm của Δ ABC
=> AO là đường cao của Δ ABC từ góc A tới cạnh BC
Xét tam giác cân ABC có
AO là đường cao
=> cũng vừa là đường phân giác góc BCA (tính chất tam giác cân)
ĐPCM
a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
góc CBD + góc ABD = góc ABC
góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9 = 25
=> BD2 = 25 - 9
=> BD2 = 16
=> BD2 = \(\sqrt{14}\)
=> BD = 4cm
Vậy a)... b)... c)... d)...