K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2021

(Bạn tự vẽ hình nha!)

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

          AB=AC (gt)

          A là góc chung

Do đó, ............... (ch-gn)

=> BD=CE (2 cạnh tương ứng)

b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2

Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2

Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:

          BD=CE (cmt)

          B2= C2 (cmt)

Do đó,.......... (ch-gn)

=> BE=DC (2 cạnh tương ứng)

Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:

         BE= DC (cmt)

         B1 = C1 (cmt)

Do đó tam giác OBE= tam giác OCD (cgv-gnk)

c) Ta có: AB=AC (gt) => AE+EB= AD+DC

Mà BE=DC (cmt) nên AE=AD

Xét tam giác ADO và tam giác AEO có:

          EO=OD ( vì tam giác OBE= tam giác OCD)

          AE=AD (cmt)

          AO là cạnh chung

Do đó,.................(c.c.c)

=> A1= A2 ( 2 góc tương ứng)

=> AO là tia phân giác góc A

Vậy AO là tia phân giác góc BAC.

19 tháng 2 2020

Ai trả lời giúp mình với mình đang cần gấp

19 tháng 2 2020

a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
 Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
    Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
      góc CBD + góc ABD = góc ABC
      góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
      BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9   = 25
=> BD2         = 25 - 9
=> BD2         = 16
=> BD2         = \(\sqrt{14}\)   
=> BD           = 4cm
Vậy a)... b)... c)... d)...

24 tháng 3 2020

A) \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta BDA\)VUÔNG TẠI D VÀ\(\Delta CEA\)VUÔNG TẠI E CÓ

       \(BA=CA\left(GT\right)\)

  \(\widehat{A}\)LÀ GÓC CHUNG

=>\(\Delta BDA\)=\(\Delta CEA\)( CẠNH HUYỀN - GÓC VUÔNG )

=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )

B)  VÌ \(\Delta BDA\)=\(\Delta CEA\)(CMT)

=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); \(\widehat{ABD}=\widehat{ACE}\)HAY \(\widehat{EBO}=\widehat{DCO}\)( HAI GÓC TƯƠNG ỨNG ) 

MÀ \(BE+EA=AB\)

    \(CD+DA=AC\)

MÀ AB = AC (CMT);  DA = EA (CMT)

=> BE = CD

XÉT \(\Delta OEB\)\(\Delta ODC\)

\(\widehat{BEO}=\widehat{CDO}=90^o\)

\(EB=DC\left(CMT\right)\)

 \(\widehat{EBO}=\widehat{DCO}\)

=>\(\Delta OEB\)=\(\Delta ODC\)(G-C-G)

24 tháng 3 2020

C) VÌ  \(\Delta OEB=\Delta ODC\left(CMT\right)\)

=> OE = OD

XÉT \(\Delta AEO\)\(\Delta ADO\)

\(AE=AD\left(CMT\right)\)

\(\widehat{AEO}=\widehat{ADO}=90^o\)

OE = OD (CMT)

=>\(\Delta AEO\)=\(\Delta ADO\)(C-G-C)

=> \(\widehat{EAO}=\widehat{DAO}\)HAI GÓC TƯƠNG ỨNG

MÀ AO ẰM GIỮA AE VÀ AD

=> AO LÀ PHÂN GIÁC CỦA \(\widehat{EAD}\)

HAY  AO LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\)

=>\(\widehat{OBE}=\widehat{OCD}\)

ΔABD=ΔACE

=>AD=AE

AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC

c: ΔOEB=ΔODC

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AH làđường trung tuyến

nên AH là phân giác của góc BAC

mà AO là phân giác của góc BAC(cmt)

và AO,AH có điểm chung là A

nên A,O,H thẳng hàng

30 tháng 8 2016

A B C E D O xét Δ ABC có AB=AC(gt)

=> ΔABC cân tại A 

Xét tam giác vuông BDC và tam giác vuông CEB có

BC cạnh chung

góc BCD = góc CBE ( Δ ABC cân cmt)

=> Δ BDC= ΔCEB ( chgn)

=> BD=CE (cctư)

b) ta có Δ BDC= ΔCEB (cmt)

=> EB=DC (cctư)

mặt khác ta có

góc DOC + góc OCD =90o (1)

góc EOB + góc OBE = 90(2)

mà góc DOC = góc EOB (đđ) (3)

(1),(2)&(3) => góc DCO = góc EBO

Xét Δ vuông OEB  và Δ vuông ODC có

EB=DC(cmt)

góc DCO = góc EBO

=> Δ OEB = Δ ODC ( cgvgnk)

C) Xét tam giác ABC có

BD cắt CE tại O

mà BD là đường cao 

CE là đường cao

=> O là trực tâm của Δ ABC

=> AO là đường cao của Δ ABC từ góc A tới cạnh BC

Xét tam giác cân ABC có

AO là đường cao 

=> cũng vừa là đường phân giác góc BCA (tính chất tam giác cân)

ĐPCM

 

 

 

19 tháng 11 2016

chgn là gì bạn

 

3 tháng 12 2017

a) Xét tam giác vuông ABD và tam giác vuông ACE có
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE(hai cạnh tương ứng)
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác vuông OEB và tam giác vuông ODC có
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC(cạnh góc vuông-góc nhọn kề cạnh) => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC(hai góc tương ứng)
=> AO la tia phân giác góc BAC

26 tháng 12 2018

a) tam giác ABC có AB=AC (gt)

=> BD=CE

b)BD=CE (cmt)

=> OEB=ODC

c)vì O là giao điểm BD và CE (gt)

mà OEB=ODC 

=> AO là tia phân giác của BAC

12 tháng 11 2015

a) Xét tam giác ADB và tam giác AEC có :

         AB = AC (gt)

      góc ADB = AEC =90'

         A là góc chung

Suy ra tam giác ADB = tam giác AEC

Do đó   BD = EC ( 2 cạnh tương ứng )

b) Ta có AB = AC 

Nên tam giác ABC cân tại A

Do đó B = C

Xét tam giác BEC và tam giác CDB có

B = C ( cmt )

BC là cạnh chung

BEC = BDC = 90'

Suy ra tam giác BEC = tam giác CDB

Do đó BE = CD ( 2 cạnh tương ứng )

Xét tam giác OEB và tam giác ODC có 

BE = CD ( cmt )

BEO = CDO = 90'

EBO = DCO ( do tam giác ABD= tam giác AEC )

Suy ra tam giác OEB = tam giác ODC

Xét tam giácAOB và tam giác AOC có:

AO là cạnh chung

AB = AC ( gt )

OB = OC ( do tam giác EOB = ODC )

Suy ra tam giác AOB = tam giác AOC

Do đó BAO = CAO ( 2 góc tương ứng )

Vậy AO la tia phân giác BAC