Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 80^o 40^o 1 2
GT \(\Delta ABC\)có
\(\widehat{A}\)= 80o
\(\widehat{B}\)= 40o
Tia phân giác của \(\widehat{C}\)cắt AD
KL \(\widehat{CDA}?\)\(\widehat{CDB}?\)
Giải:
Trong \(\Delta\)ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}\)= 180o (Định lí)
=> \(\widehat{C}=180^o-\left(\widehat{A}+\widehat{B}\right)\)
Mà \(\widehat{A}=80^o\)(GT)
\(\widehat{B}=40^o\)(GT)
Ngoặc ''}'' 3 điều trên
=> \(\widehat{C}=180^o-\left(80^o+40^o\right)\)
=> \(\widehat{C}=180^o-120^o=60^o\)(1)
Vì CD là tia phân giác của \(\widehat{C}\)
=> \(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\)(Tính chất)
Mà \(\widehat{C}=60^o\)(Theo (1))
Ngoặc ''}'' 2 điều trên
=> \(\widehat{C_1}=\widehat{C_2}=\frac{60^o}{2}=30^o\)(2)
\(\widehat{CDB}\)là góc ngoài đỉnh D của \(\Delta CAD\)
=> \(\widehat{CDB}=\widehat{A}+\widehat{C_1}\)(Định lí)
Mà \(\widehat{A}=80^o\)(GT)
\(\widehat{C_1}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> \(\widehat{CDB}=80^o+30^o=110^o\)
\(\widehat{CDA}\)là góc ngoài đỉnh D của \(\Delta CBD\)
=> \(\widehat{CDA}=\widehat{B}+\widehat{C_2}\)(Định lí)
Mà \(\widehat{B}=40^o\)(GT)
\(\widehat{C_2}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> \(\widehat{CDA}=40^o+30^o=70^o\)
Vậy \(\widehat{CDA}\) = 70o; \(\widehat{CDB}\) = 110o
\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{3^6.2^6.2^9}\)
\(=3^2\)
\(=9\)
Mình đã xong hình vẽ,giờ là GT-KL:
GT | Tam giác ABC,AB=AC HB=HC,I thuộc AH CI cắt AB tại D BI cắt AC tại E |
---|---|
KL | a)\(\widehat{AHB}=\widehat{AHC}=90o\) b)tam giác IAB =tg IAC c)ID =IE |
Xét \(\Delta AIC\)và\(\Delta ABC\)Ta có : \(\frac{A}{2}+\frac{C}{2}+I=A+B+C=180^0\)
\(=>A+B+C-\frac{A}{2}-\frac{C}{2}-I=0\)
\(=>\frac{A}{2}+\frac{C}{2}+B-I=0\)
Vì \(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\)(Nửa tam giác)
\(=>\frac{A}{2}+\frac{C}{2}+\frac{B}{2}+\frac{B}{2}-I=0\)
\(=>90^0+30^0=I\)
\(=>I=120^0\)Hay \(AIC=120^0\)