Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh tam giác ADB=tam giác ADC
=>góc BAD=góc CAD=>AD là tia phân giác của góc BAC=>góc BAD=góc CAD=10độ
b, Do tam giác ABC cân tại A và tam giác DCB đều nên góc ABC=(180độ-20độ):2= 80độ;góc DBC= 60độ
=> góc ABD=80 độ - 60 độ=20độ
Tia BM là tia phân giác của góc ABD=> góc ABM=góc DBM=10độ
Chứng minh được tam giác ABM = tam giác BAD(g.c.g) => AM=BD mà BD =BC nên AM=BC (đpcm)
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
A B C D K M
a, Xét t/g ABD và t/g ACD có:
AB=AC(gt),BD=CD(gt),AD chung
=> t/g ABD = t/g ACD (c.c.c)
=> góc DAB = góc DAC (2 góc tương ứng)
=> AD là tia p/g của góc BAC
b, Ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-20^o}{2}=80^o\) (tam giác ABC cân tại A)
Vì t/g DBC đều => góc DBC = góc DCB = góc BDC = 60 độ
=> góc ABD = góc ABC - góc DBC = 80 độ - 60 độ = 20 độ
=> góc BAC = góc ABD = 20 độ
Lại có: góc ABM = góc DBM = góc ABC / 2 = 20 độ/2 = 10 độ (BM là tia p/g của góc ABD)
góc DAB = góc DAC = góc BAC/2 = 20 độ / 2 = 10 độ (AD là tia p/g của góc BAC)
=> góc ABM = góc DAB = 10 độ
Xét t/g ABM và t/g BAD có:
góc ABM = góc DAB (c/m trên), AB chung, góc BAM = góc ABD (c/m trên)
=> t/g ABM = t/g BAD (g.c.g)
=>AM = BD (2 cạnh tương ứng)
Mà BD = BC (t/g DBC đều)
=> AM = BC
P/s: hình vẽ minh họa thôi
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )
mik làm lại cho nó lq được ko?
a) ta xét t/gABM và t/gDBM ta có:
AB=DB (gt)
=>^ABM=^DBM
BM chung
=>t/gABM=t/gDBM (c.g.c)
b)Vì t/gABM=t/gDEM
=>AM=DM ( 2 cạnh tương ứng)
=>^MAD=^AMD=90o
=>MD_|_BC
c)Vì t/gABM=t/gDEM (đối đỉnh)
=>t/gAME=t/gDMC(cgv-gn)
=>ME=MC
=>t/gMEC cân tại M
=>^MEC=^MCE
Mà trong t/gMEC ta thấy:
^MEC+^MDA+^DAM=^MEC+^CEM+EMC
mà ^EMC=^AMD ( 2 góc đối đỉnh)
=>^MAD+^MDA=^MEC+^EMC
=>^MAD=^MCE ( so le)
=>AD//CE
=>đpcm.
A B C D E M
a) tam giác ABM=tam giác DBM (c.g.c) (1) suy ra AM=MD
b) Từ (1) suy ra góc BAM = góc BDM
mà góc BAM = 900
suy ra góc BDM = 900
suy ra MD vuông góc với BC tại D
c) Vì AB=BD suy ra tam giác ABD cân tại B
mà BM là phân giác của góc ABD
suy ra BM là phân giác đồng thời là đường cao của tam giác ABD
suy ra BM vuông góc với AD (3)
Xét tam giác AME và tam giác DMC
có góc MAE=góc MDC=900
AM=MD ( CMT)
góc AME=góc DMC ( đối đỉnh)
suy ra tam giác AME = tam giác DMC (g.c.g)
suy ra AE=DC
mà AB+AE=BE, BD+DC=BC lại có AB=BD
suy ra BC = BE suy ra tam giác EBC cân tại B
mà BM là phân giác của góc EBC
suy ra BM là phân giác đồng thời là đường cao của tam giác EBC
suy ra BM vuông góc với CE tại M (4)
Từ (3) và (4) suy ra AD//CE
đúng đó
A B C K
Tam giác ABK là tam giác đều.