Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ;
S = 1 + 7 + 7 2 + 7 3 + 7 4 + .... + 7 30
=> 7S = 7 + 7 2 + 7 3 + 7 4 + 7 5 + .... + 7 31
=> 7S - S = ( 7 + 7 2 + 7 3 + 7 4 + 7 5 + .... + 7 31 ) - ( 1 + 7 + 7 2 + 7 3 + 7 4 + .... + 7 30 )
=> 6S = 7 31 - 1
=> 6S + 1 = 7 31 - 1 + 1
=> 6S + 1 = 7 31
=> n = 31
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.
Ta có: abc = 100 . a + 10 . b + c = n2 - 1 (1)
cbd = 100 . c + 10 . b + a = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được: 99 . (a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Vì:
100 =< abc =< 999 nên:
100 =< n2 - 1 =< 999 => 101 =< n2 =< 1000 => 11 =< 31 => 39 =< 4n - 5 =< 119
Vì: 4n - 5 chia hết cho 99 nên 4n - 5 = 99 => n = 26 => abc = 675 (thỏa, mãn yêu cầu của đề bài)
P/s: dấu =< này là bé hơn hoặc bằng nhé
\(n^2-2n-22\) \(⋮\)\(n+3\)
\(\Leftrightarrow\)\(\left(n-5\right)\left(n+3\right)-7\) \(⋮\)\(n+3\)
Ta thấy: \(\left(n-5\right)\left(n+3\right)\)\(⋮\)\(n+3\)
nên \(7\)\(⋮\)\(n+3\)
hay \(n+3\) \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n+3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-10\) \(-4\) \(-2\) \(4\)
Vậy....
tink nhé bài này dễ quá đúng 100%
S=1+7+7^2+...+7^30
7S=7+7^2+...+7^30+7^31
7S-S=7^31-1
6S=7^31-1
=>6S+1=7^31 =>n=31