K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
6 tháng 2 2021

Xét m=1 phương trình trở thành \(-4x+1=0\)có nghiệm duy nhất x=-1/4

với m#1 ta có \(\Delta'=\left(m+1\right)^2-m\left(m-1\right)=3m+1\)

với \(\hept{\begin{cases}m\ne1\\m>-\frac{1}{3}\end{cases}}\) pt có hai nghiệm phân biệt

với \(m=-\frac{1}{3}\) pt có nghiệm duy nhất

với \(m< -\frac{1}{3}\)pt vô nghiệm,

theo viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{2\left(m+1\right)}{m-1}=2+\frac{4}{m-1}\\x_1x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\) lấy phương trình trên trừ đi 4 lần phương trình dưới ta có 

\(x_1+x_2-4x_1x_2=-2\)

ý sau, ta có \(\left|x_1-x_2\right|=\frac{2\sqrt{\Delta'}}{\left|a\right|}=\frac{2\sqrt{3m+1}}{\left|m-1\right|}>2\)

\(\frac{\Leftrightarrow4\left(3m+1\right)}{\left(m-1\right)^2}\ge4\Leftrightarrow m^2-5m\le0\Rightarrow m\in\left[0,5\right]\)

kết hợp với đk có 2 nghiệm phân biệt ở câu a , ta có \(m\in\left[0,5\right]\backslash\left\{1\right\}\)

2 tháng 5 2016

kh biết

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:
Theo hệ thức Viet, nếu $x_1,x_2$ là 2 nghiệm của pt $x^2-2xm-m^2-1=0$ thì:

$x_1+x_2=2m$

$x_1x_2=-m^2-1$

\(\Rightarrow \left\{\begin{matrix} (x_1+x_2)^2=4m^2\\ 4x_1x_2=-4m^2-4\end{matrix}\right.\)

$\Rightarrow (x_1+x_2)^2+4x_1x_2=-4$

$\Leftrightarrow x_1^2+x_2^2+6x_1x_2=-4$ 

Đây chính là biểu thức liên hệ giữa $x_1,x_2$ độc lập với $m$.

AH
Akai Haruma
Giáo viên
2 tháng 5 2018

Lời giải:

a)

* Nếu $m=1$. PT là pt bậc nhất \(-4x+1=0\) có nghiệm \(x=\frac{1}{4}\)

* Nếu \(m\neq 1\). PT là pt bậc 2:

\(\Delta'=(m+1)^2-m(m-1)=3m+1\)

\(+)m=\frac{-1}{3}\Rightarrow \Delta'=0\): PT có nghiệm duy nhất \(x=\frac{-1}{2}\)

+) \(m> \frac{-1}{3}\Rightarrow \Delta'>0\): PT có hai nghiệm phân biệt

+) \(m< \frac{-1}{3}\Rightarrow \Delta'< 0\): PT vô nghiệm.

b)

Theo phần a khi \(m> \frac{-1}{3}; m\neq 1\) thì pt có hai nghiệm phân biệt $x_1,x_2$

Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m-1}\\ x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m-1}\\ 4x_1x_2=\frac{4m}{m-1}\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-4x_1x_2=\frac{2(m+1)-4m}{m-1}=\frac{2-2m}{m-1}=-2\)

Đây chính là biểu thức liên hệ giữa $x_1,x_2$ mà không phụ thuộc vào $m$

--------------

Ta có:

\(|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)

\(=\sqrt{\frac{4(m+1)^2}{(m-1)^2}-\frac{4m}{m-1}}=2\sqrt{\frac{3m+1}{(m-1)^2}}\)

Để \(|x_1-x_2|\geq 2\Leftrightarrow 2\sqrt{\frac{3m+1}{(m-1)^2}}\geq 2\)

\(\Leftrightarrow \sqrt{\frac{3m+1}{(m-1)^2}}\geq 1\)

\(\Leftrightarrow \frac{3m+1}{(m-1)^2}\geq 1\)

\(\Leftrightarrow 3m+1\geq (m-1)^2\) (\(\forall m\neq 1, m> \frac{-1}{3})\)

\(\Leftrightarrow m^2-5m\leq 0\Leftrightarrow 0\leq m\leq 5\)

Vậy để thỏa mãn đk trên thì \(\frac{-1}{3}< m\leq 5; m\neq 1\)

3 tháng 5 2020

đoạn cuối là m + 1 hay  m + 11 vậy bạn

3 tháng 5 2020

Xét 

\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)

\(\Rightarrow m\le\frac{7}{6}\)

Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)

\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)

\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)

Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))

16 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

      `<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`

                   `<=>m^2+m+3 > 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`

                        `<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`

              `=>x_1+x_2-2x_1.x_2=6`

16 tháng 5 2023

thanks

23 tháng 4 2021

dcmm shut up

23 tháng 4 2021

có làm ms có ăn ,ko làm mà đòi có ăn thì ăn đb ân c

11 tháng 5 2021

a) Ta có: △' = [-(m+1)]2 - m + 2 

                   = m2 + 2m + 1 - m + 2

                   = m2 + m + 1

                   = (m + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\) > 0 ∀m

=> Phương trình luôn có 2 nghiệm phân biệt

b) Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=m-2\end{matrix}\right.\)⇔ \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\2x_1.x_2=2m-4\end{matrix}\right.\)

=> x1 + x2 - 2x1x2 = 2m + 2 - 2m + 4 => x1 + x2 - 2x1x2 = 6