Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
a.
\(P=x_1^2+x_2^2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2\)
\(P=4\left(m+1\right)^2+4\left(2m+10\right)\)
\(P=4m^2+16m+44=\left(4m^2+16m+12\right)+32\)
\(P=4\left(m+1\right)\left(m+3\right)+32\ge32\)
\(P_{min}=32\) khi \(m=-3\)
b.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+10\end{matrix}\right.\)
Trừ vế cho vế:
\(x_1+x_2-x_1x_2=-8\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)
Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)
b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)
Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)
Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)
Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)
Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)
\(\Leftrightarrow\frac{22m-16}{7m-3}>0\)
\(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)
Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0
a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)2 +4 >0 với mọi m
pt luôn có 2 nghiệm pb với mọi m
b) x =3 là nghiệm
32 -(m+1).3 +2m -3 =0
=>-m +3 =0 => m =3
\(x^2-4x-m^2=0\) (1)
\(a)\) Để pt (1) có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(-2\right)^2-\left(-m\right)^2=4+m^2>0\) ( luôn đúng )
Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m
\(b)\) Ta có : \(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1+x_2\right)\left(x_1-x_2\right)\right|\)
\(\Leftrightarrow\)\(A^2=\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\left(x_1^2+x_2^2-2x_1x_2\right)=\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=-m^2\end{cases}}\)
(*) \(\Leftrightarrow\)\(A^2=4^2\left[4^2-4\left(-m^2\right)\right]=16\left(16+4m^2\right)=64m^2+256\ge256\)
\(\Leftrightarrow\)\(A\ge\sqrt{256}=16\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(64m^2=0\)\(\Leftrightarrow\)\(m=0\)
Vậy GTNN của \(A=16\) khi \(m=0\)
a,\(x^2-4x-m^2=0\)(*)
\(\Delta=4^2-4\left(-m^2\right)=16+4m^2\ge16>0\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi giá trị của m.
b,\(x_1=\frac{4-\sqrt{4m^2+16}}{2};x_2=\frac{4+\sqrt{4m^2+16}}{2}\)
\(\Rightarrow\left|x_1+x_2\right|=\left|\frac{4-\sqrt{4m^2+16}+4+\sqrt{4m^2+16}}{2}\right|=\left|\frac{8}{2}\right|=4\)
pt luôn = 4
Sửa câu b
\(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=\left|\left(\frac{4-\sqrt{4m^2+16}}{2}-\frac{4+\sqrt{4m^2+16}}{2}\right)\left(\frac{4-\sqrt{4m^2+16}}{2}+\frac{4+\sqrt{4m^2+16}}{2}\right)\right|\)\(\Leftrightarrow A=\left|-\left(\sqrt{4m^2+16}\right).4\right|\)
Vì \(4m^2+16>0\)
\(\Rightarrow A=\sqrt{4m^2+16}.4\ge\sqrt{16}.4=4^2=16\)
Vậy MinA = 16
dcmm shut up
có làm ms có ăn ,ko làm mà đòi có ăn thì ăn đb ân c