Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
a, Có \(\Delta'=m^2+1>0\)
Nên pt luôn có 2 nghiệm phân biệt (Không phải nghiệm trái dấu nhá)
Giải thích vì sao ko có nghiệm trái dâu :
Theo Vi-ét có \(\hept{\begin{cases}S=x_1+x_2=-1\\P=x_1.x_2=2m\end{cases}}\)
Vì tích bằng 2m chưa biết âm hay dương nên ko thể KL được
b, Ta có \(\left(x_1-x_2\right)^2+3x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Leftrightarrow1-2m=7\)
\(\Leftrightarrow m=-3\)
Bạn Incur nhầm vi ét rồi ạ.
\(x^2-2mx-1=0\)
a, \(\Delta'=m^2+1>0\Rightarrow\)Phương trình luôn có hai nghiệm phân biệt.
Ta thấy a.c = 1. (-1)= - 1 <0
Suy ra luôn có nghiệm trái dấu.
b, Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-1\end{cases}}\)
\((x_1-x_2)^2+3x_1x_2=7\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Leftrightarrow4m^2+1=7\Leftrightarrow m^2=\frac{3}{2}\Leftrightarrow m=\pm\frac{\sqrt{6}}{2}\)
Em nghĩ đề phải là x1^3 + x2^3 chứ :<
Để phương trình có 2 nghiệm : \(\Delta\ge0\)
hay \(25-4\left(3m-1\right)=25-12m+4=29-12m\ge0\)
\(\Leftrightarrow-12m\ge-29\Leftrightarrow m\le\frac{29}{12}\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-5\\x_1x_2=\frac{c}{a}=3m-1\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=25\Rightarrow x_1^2+x_2^2=25-2x_1x_2=25-6m+2=27-6m\)
Ta có : \(x_1^3+x_2^3+3x_1x_2=75\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)+3x_1x_2=75\)
\(\Leftrightarrow-5\left(27-6m-3m+1\right)+3\left(3m-1\right)=75\)
\(\Leftrightarrow-5\left(28-9m\right)+9m-3=75\)
\(\Leftrightarrow-140+45m+9m-3=75\Leftrightarrow m=\frac{109}{27}\)( ktm )
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)\) = \(4m^2-4m+1-4m^2+4\)= 5-4m
theo phương trình 2 nghiệm <=> \(\Delta>0\Leftrightarrow5-4m\ge0\Leftrightarrow4m\le5m\le\frac{5}{4}\)
theo hệ thức nghiệm Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{cases}}\)
ta có: \(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
<=> \(x_1-3x_2=\left(2m-1\right)^2-4\left(m^2-1\right)\)
<=> \(x_1-3x_2=4m^2-4m+1-4m^2+4\)
<=> \(x_1-3x_2=5-4m\)
ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\4x_1+4x_2=8m-4\end{cases}\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\x_1+x_2=2m-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\4x_1+4x_2=8m-4\end{cases}\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\4x_1+6m-6=8m-4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\4x_1=2m+2\end{cases}\Leftrightarrow\hept{\begin{cases}x_2=\frac{6m-6}{4}\\x_1=\frac{2m+2}{4}\end{cases}}}\)
ta có: \(x_1x_2=m^2-1\Leftrightarrow\frac{\left(6m-2\right)\left(2m+2\right)}{16}=m^2-1\)
\(\Leftrightarrow\frac{12m^2+12m-12m-12}{16}=m^2-1\Leftrightarrow\frac{12m^2-12}{16}=m^2-1\)
\(\Leftrightarrow12m^2-12=16\left(m^2-1\right)\Leftrightarrow12m^2-12=16m^2-16\)
\(\Leftrightarrow4m^2-4=0\Leftrightarrow4m^2=4\Leftrightarrow m=\pm1\left(tmđk\right)\)
Vậy \(m=\pm1\)thì \(\left(x_1-x_2\right)^2=x_1-3x_2\)
Ta có: \(\Delta=5^2-5.3.1=25-12=13>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-1\end{matrix}\right.\)
\(K=\left(3x_1-1\right)\left(3x_2-1\right)+3\\ =3x_1x_2-3x_2-3x_1+1+3=3.\left(-1\right)-3\left(x_1+x_2\right)+4\\ =-3+4-3\left(-5\right)\\ =1+15\\ =16\)
dạ em cảm ơn nhưng mà
delta = b2 - 4ac ạ