K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

1.

\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\) 

Với \(\Delta'>0\forall m\)thì  phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :

x1 + x2 = \(-\frac{-m}{1}=m\) ;       x1x2 =\(\frac{2m-3}{1}=2m-3\)

Thay x+ x2 = m;   x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :

A = x12 + x22 + 2x1x2 - 2x1x2 

A = ( x+ x2 + 2x1x2 ) - 2x1x2

A = ( x1 + x2 )2 - 2x1x2 

A = m2 - 2.( 2m - 3 )

A = m2 - 4m + 6

\(\Delta'=\left(-2\right)^2-1.6=-2< 0\) 

Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất

30 tháng 5 2017

đầu bài thiếu yêu cầu rồi

30 tháng 5 2017

| x1​2 - x22​​| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn

30 tháng 5 2017

Ai giúp với

29 tháng 5 2017

cho nao co m thi thay bang 3 va tinh den ta nhe ban

29 tháng 5 2017

1. Thay m = 3 vào phương trình, ta được:

      x2 - 2(3 + 3)x + 32 + 3 = 0

<=>x2 - 12x + 12 = 0

  \(\Delta'\)= b'2 - ac = ( -6 )- 12 = 24 > 0

=> phương trình có 2 nghiệm phân biệt bạn tự tính nha ^ ^.

2. Mình thích ý này!

 \(\Delta'\)= b'2 - ac = (-m-3)2 - 1.(m2 + 3) = m2 + 6m + 9 - m2 - 3 = 6m + 6

Để phương trình có 2 nghiệm phân biệt => \(\Delta'\)> 0 => m > -1.

Theo hệ thức viete ta có:

 \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=m^2+3\end{cases}}\)

Theo đề bài:    2 (x1 + x2) = 2x1x2

               <=> x1 + x= x1x2

               <=> 2m + 6 = m2 + 3

       Giải phương trình ta được m = 3.

NV
14 tháng 5 2020

\(m\ne1\) và coi như pt đã có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-1}\\x_1x_2=\frac{m-4}{m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x_1+x_2\right)=\frac{6m}{m-1}\\2x_1x_2=\frac{2m-8}{m-1}\end{matrix}\right.\)

\(\Rightarrow3\left(x_1+x_2\right)+2x_1x_2=\frac{6m}{m-1}+\frac{2m-8}{m-1}=\frac{8m-8}{m-1}\)

\(\Rightarrow3\left(x_1+x_2\right)+2x_1x_2=8\)

Đây là biểu thức cần tìm

19 tháng 6 2015

1) pt có 2 nghiệm pb <=> \(\Delta=16-4\left(-m^2\right)=16+4m^2>0\)=> pt luôn có 2 nghiệm phân biệt với mọi m

2) vì là giá trị tuyệt đối => A>=0 => Min A=0 <=> \(x1^2-x2^2=0\Leftrightarrow x1=x2\)

=> pt có 1 nghiệm kép. mà biết thức đenta luôn >0 => k tìm đc giá trị nhỏ nhất của A