K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

b/

\(a^3+a^3+1\ge3\sqrt[3]{a^6}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

Cộng vế với vế:

\(2\left(a^3+b^3+c^3\right)\ge3\left(a^2+b^2+c^2\right)-3\)

Mặt khác ta lại có:

\(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)-3\ge2\left(a^2+b^2+c^2\right)+3-3\)

\(\Leftrightarrow a^3+b^3+c^3\ge a^2+b^2+c^2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
21 tháng 8 2020

\(\frac{a^3}{\left(b+2\right)^2}+\frac{b+2}{27}+\frac{b+2}{27}\ge3\sqrt[3]{\frac{a^3\left(b+2\right)^2}{27^2.\left(b+2\right)^2}}=\frac{a}{3}\)

Tương tự: \(\frac{b^3}{\left(c+2\right)^2}+\frac{c+2}{27}+\frac{c+2}{27}\ge\frac{b}{3}\) ; \(\frac{c^3}{\left(a+2\right)^2}+\frac{a+2}{27}+\frac{a+2}{27}\ge\frac{c}{3}\)

Cộng vế với vế:

\(VT+\frac{2\left(a+b+c\right)+12}{27}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow VT+\frac{2}{3}\ge1\Leftrightarrow VT\ge\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

14 tháng 2 2020

a/ thay m=3 vào (1) ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=3-\sqrt{5}\end{matrix}\right.\)

vậy \(x=\sqrt{5}+3\) hoặc \(x=3-\sqrt{5}\) khi m=3

b/ ta có:

\(\Delta'=b'^2-ac\)

=\(m^2-4\) để phương trình có nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow m^2\ge4\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

theo hhệ thức vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1.x_2=4\left(2\right)\end{matrix}\right.\)

theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+2x_1+x_2^2+2x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-2x_1.x_2=0\) (3)

từ (1) ; (2) và (3) ta có:

\(4m^2+2.2m-2.4=0\)

\(\Leftrightarrow\left(2m+1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=3\\2m+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

vậy m=-2

12 tháng 7 2020

a,Với \(m=2\)thì phương trình trên tương đương với :

\(x^2-4x-4+12-5=0\)

\(< =>x^2-4x+3=0\)

Ta dễ dàng nhận thấy : \(1-4+3=0\)

Nên phương trình sẽ có 2 nghiệm phân biệt là \(\hept{\begin{cases}x_1=1\\x_2=3\end{cases}}\)

b,Để phương trình luôn có nghiệm : \(\Delta\ge0\)

\(< =>\left(-4\right)^2-4\left(-m^2+6m-5\right)\ge0\)

\(< =>16+4m^2-24m+20\)

\(< =>\left(2m\right)^2-2.2.m.6+6^2=\left(2m-6\right)^2\ge0\)(đúng)

c,Theo bất đẳng thức AM-GM thì :

\(x_1^3+x_2^3\ge2\sqrt[2]{x_1^3x_2^3}=2x_1x_2\)

Nên ta được : \(P\ge2x_1x_2\)

Mặt khác theo hệ thức Vi ét thì : \(x_1x_2=-m^2+6m-5\)

\(< =>P\ge-2m^2+12m-10\)

\(< =>P\ge-\left(\sqrt{2}m\right)^2+2\left(-\sqrt{2}m\right)\left(-\sqrt{18}\right)+\left(-\sqrt{18}\right)^2\)

\(< =>P\ge\left[-\sqrt{2}m.\left(-\sqrt{18}\right)\right]^2-28\)

Đẳng thức xảy ra khi  và chỉ khi \(m=0\)

Vậy \(Min_P=-28\)khi \(m=0\)

12 tháng 7 2020

x2 - 4x - m2 + 6m - 5 = 0

Với m = 2 ta có :

x2 - 4x - m2 + 6m - 5 = 0

<=> x2 - 4x - 22 + 2.6 - 5 = 0

<=> x2 - 4x - 4 + 12 - 5 = 0

<=> x2 - 4x + 3 = 0

\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot3=16-12=4\)

\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{4}}{2}=3\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{4}}{2}=1\)

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm. 

NV
8 tháng 5 2019

\(\Delta=\left(4m+3\right)^2-8\left(2m^2-1\right)=24m+17\)

\(\Delta\ge0\Rightarrow24m+17\ge0\Leftrightarrow24m\ge-17\Rightarrow m\ge-\frac{17}{24}\)

Làm gì có 21 nào nhỉ?

8 tháng 5 2019

Viết nhầm :))

31 tháng 5 2017

?