Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a) thay m=1 vvào rồi giải như giải ptrinh bậc hai bình thường
b)chứng minh phương trrình (1) luôn có hai nghiệm phân biệt(tìm đenta, nếu đenta lớn hơn 0 thì pt có 2 nghiệm phân biệt)
Dựa vào hệ thức viet để giải một pt của hệ (thường thì là pt cộng)với pt đã cho ở đầu bài
thay lần lượt từng kết quả vào để tìm m
c)mk vẫn còn chưa thành thạo dạng này lắm nên chưa biết làm.
a/ \(x^2-mx+m-5\left(1\right)\)
( a = 1; b = -m; c = m - 5 )
\(\Delta=b^2-4ac\)
\(=\left(-m\right)^2-4.1.\left(m-5\right)\)
\(=m^2-4m+20\)
\(=m^2-4m+2^2-2^2+20\)
\(=\left(m-2\right)^2+16>0\forall m\)
Vậy pt luôn có 2 nghiệm pb với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=m\\P=x_1x_2=\frac{c}{a}=m-5\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2\)
\(=S^2-2P\)
\(=m^2-2\left(m-5\right)\)
\(=m^2-2m+10\)
\(=m^2-2m+1^2-1^2+10\)
\(=\left(m-1\right)^2+9\ge9\)
Vậy \(MinA=9\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=0\)
a,Với \(m=2\)thì phương trình trên tương đương với :
\(x^2-4x-4+12-5=0\)
\(< =>x^2-4x+3=0\)
Ta dễ dàng nhận thấy : \(1-4+3=0\)
Nên phương trình sẽ có 2 nghiệm phân biệt là \(\hept{\begin{cases}x_1=1\\x_2=3\end{cases}}\)
b,Để phương trình luôn có nghiệm : \(\Delta\ge0\)
\(< =>\left(-4\right)^2-4\left(-m^2+6m-5\right)\ge0\)
\(< =>16+4m^2-24m+20\)
\(< =>\left(2m\right)^2-2.2.m.6+6^2=\left(2m-6\right)^2\ge0\)(đúng)
c,Theo bất đẳng thức AM-GM thì :
\(x_1^3+x_2^3\ge2\sqrt[2]{x_1^3x_2^3}=2x_1x_2\)
Nên ta được : \(P\ge2x_1x_2\)
Mặt khác theo hệ thức Vi ét thì : \(x_1x_2=-m^2+6m-5\)
\(< =>P\ge-2m^2+12m-10\)
\(< =>P\ge-\left(\sqrt{2}m\right)^2+2\left(-\sqrt{2}m\right)\left(-\sqrt{18}\right)+\left(-\sqrt{18}\right)^2\)
\(< =>P\ge\left[-\sqrt{2}m.\left(-\sqrt{18}\right)\right]^2-28\)
Đẳng thức xảy ra khi và chỉ khi \(m=0\)
Vậy \(Min_P=-28\)khi \(m=0\)
x2 - 4x - m2 + 6m - 5 = 0
Với m = 2 ta có :
x2 - 4x - m2 + 6m - 5 = 0
<=> x2 - 4x - 22 + 2.6 - 5 = 0
<=> x2 - 4x - 4 + 12 - 5 = 0
<=> x2 - 4x + 3 = 0
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot3=16-12=4\)
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{4}}{2}=3\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{4}}{2}=1\)