K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

b/

\(a^3+a^3+1\ge3\sqrt[3]{a^6}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

Cộng vế với vế:

\(2\left(a^3+b^3+c^3\right)\ge3\left(a^2+b^2+c^2\right)-3\)

Mặt khác ta lại có:

\(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)-3\ge2\left(a^2+b^2+c^2\right)+3-3\)

\(\Leftrightarrow a^3+b^3+c^3\ge a^2+b^2+c^2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
21 tháng 8 2020

\(\frac{a^3}{\left(b+2\right)^2}+\frac{b+2}{27}+\frac{b+2}{27}\ge3\sqrt[3]{\frac{a^3\left(b+2\right)^2}{27^2.\left(b+2\right)^2}}=\frac{a}{3}\)

Tương tự: \(\frac{b^3}{\left(c+2\right)^2}+\frac{c+2}{27}+\frac{c+2}{27}\ge\frac{b}{3}\) ; \(\frac{c^3}{\left(a+2\right)^2}+\frac{a+2}{27}+\frac{a+2}{27}\ge\frac{c}{3}\)

Cộng vế với vế:

\(VT+\frac{2\left(a+b+c\right)+12}{27}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow VT+\frac{2}{3}\ge1\Leftrightarrow VT\ge\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 10 2020

THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!

11 tháng 10 2020

vậy em giải giùm chị nhé

29 tháng 4 2020

\(VT=3\left(a+b+c\right)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\left(3a+\frac{2}{a}\right)+\left(3b+\frac{2}{b}\right)+\left(3c+\frac{2}{c}\right)\)

*Nháp*

Dự đoán điểm rơi tại a = b = c = 1 khi đó VT = 15

Ta dự đoán BĐT phụ có dạng \(3x+\frac{2}{x}\ge mx^2+n\)(Ta thấy hạng tử trong điều kiện đã cho ban đầu có bậc là 2 nên VP của BĐT phụ cũng có bậc 2)     (*)

Do đó ta có: \(3a+\frac{2}{a}\ge ma^2+n\);\(3b+\frac{2}{b}\ge mb^2+n\);\(3c+\frac{2}{c}\ge mc^2+n\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=15\)

\(\Rightarrow m+n=5\Rightarrow n=5-m\)

Thay n = 5 - m vào (*), ta được: \(3x+\frac{2}{x}\ge mx^2+5-m\)

\(\Leftrightarrow\frac{3x^2-5x+2}{x}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{x\left(x+1\right)}\ge m\left(x-1\right)\)

\(\Leftrightarrow m\le\frac{3x-2}{x\left(x+1\right)}\)(**)

Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{2}\Rightarrow n=\frac{9}{2}\)

Ta được BĐT phụ \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)

GIẢI:

Ta có: \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a;b;b\le\sqrt{3}\)

Ta chứng minh BĐT phụ sau: \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)(với \(0< x\le\sqrt{3}\))

\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{2x}\ge0\)(đúng với mọi \(0< x\le\sqrt{3}\))

Áp dụng, ta được: \(3a+\frac{2}{a}\ge\frac{a^2}{2}+\frac{9}{2}\);\(3b+\frac{2}{b}\ge\frac{b^2}{2}+\frac{9}{2}\);\(3c+\frac{2}{c}\ge\frac{c^2}{2}+\frac{9}{2}\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}.3=15\)

Đẳng thức xảy ra khi a = b = c = 1

16 tháng 5 2020

hình chử nhật có chu vi là 150m chiều dài hơn chiều rộng là 15m tìm tỉ số của chiều rộng và chiều dài hinh chử nhật đó

29 tháng 5 2019

Điểm rơi \(a=b=c=1\) nếu thay vào dễ thấy đề sai.

\(3.\sqrt{\frac{9}{\left(1+1\right)^2}+1^2}=\frac{3\sqrt{13}}{2}\)

Nếu giả thiết của em là đúng thì bài tương tự ở đây :D

30 tháng 5 2019

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\sum\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(=\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\frac{729}{4\left(a+b+c\right)^2}+\left(a+b+c\right)^2}=\frac{3\sqrt{13}}{2}\)

Is that true ?? \("="\Leftrightarrow a=b=c=1\)

30 tháng 5 2018

UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)

Tương tự cộng lại là xong

29 tháng 5 2018

Theo bất đẳng thức Cauchy, ta có:

\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)

\(\Rightarrow P\ge a+b+c+6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)

\(\Leftrightarrow minP=1+1+1+6=9\)

5 tháng 1 2018

Ta có:

\(a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{c}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)=-2\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a=-b;b=-c;c=-a\)

Với \(a=-b\)ta có

\(a^3+b^3+c^3=1\)

\(\Leftrightarrow c^3=1\)

\(\Leftrightarrow c=1\)

Thì ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a}-\frac{1}{a}+\frac{1}{c}=1\)

Tương tự cho 2 trường hợp còn lại được ĐPCM

Đặt P=a2+b2+c2+ab+bc+caP=a2+b2+c2+ab+bc+ca

P=12(a+b+c)2+12(a2+b2+c2)P=12(a+b+c)2+12(a2+b2+c2)

P12(a+b+c)2+16(a+b+c)2=6P≥12(a+b+c)2+16(a+b+c)2=6

Dấu "=" xảy ra khi a=b=c=1

23 tháng 6 2021

Ta có: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+6}{\left(a+b\right)^2}\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)( cô-si )

\(=\frac{\left(a+b\right)^2+a^2+b^2+2c^2}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)\(\ge1+\frac{a^2+b^2+2c^2}{2\left(a^2+b^2\right)}=1+\frac{1}{2}+\frac{c^2}{a^2+b^2}=\frac{3}{2}+\frac{c^2}{a^2+b^2}\)

CMTT \(\Rightarrow\)\(VT\ge\frac{9}{2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)

\(P=\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)

Đặt \(\hept{\begin{cases}b^2+c^2=x>0\\a^2+c^2=y>0\\a^2+b^2=z>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2=\frac{y+z-x}{2}\\b^2=\frac{z+x-y}{2}\\c^2=\frac{x+y-z}{2}\end{cases}}\)

\(\Rightarrow P=\frac{y+z-x}{2x}+\frac{z+x-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}+\frac{z}{2y}+\frac{x}{2y}-\frac{1}{2}+\frac{x}{2z}+\frac{y}{2z}-\frac{1}{2}\)

\(=\left(\frac{y}{2x}+\frac{x}{2y}\right)+\left(\frac{z}{2x}+\frac{x}{2z}\right)+\left(\frac{z}{2y}+\frac{y}{2z}\right)-\frac{3}{2}\)

\(\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)( bđt cô si )

\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm)

Dấu "=" xảy ra <=> a=b=c=1

 

NV
4 tháng 12 2020

\(a^2+b^2+c^2=3\Rightarrow0< a;b;c< \sqrt{3}\)

Với mọi số thực \(x\in\left(0;\sqrt{3}\right)\) ta có đánh giá sau:

\(2x+\frac{1}{x}\ge\frac{x^2+5}{2}\)

Thật vậy, BĐT tương đương:

\(2\left(2x^2+1\right)-x\left(x^2+5\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2-x\right)\ge0\) (luôn đúng với mọi \(x\in\left(0;\sqrt{3}\right)\))

Áp dụng: \(P=2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{a^2+b^2+c^2+15}{2}=9\)

\(P_{min}=9\) khi \(a=b=c=1\)