K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

Ta có: \(M=\frac{10^{2021}+2}{-3}\)

    \(\Leftrightarrow M=\frac{100...0+2}{-3}\)  ( 2021 số 0 )

    \(\Leftrightarrow M=\frac{100...02}{-3}\)   ( 2020 số 0 )

Vì \(1+0+0+...+0+2=3⋮-3\)\(\Rightarrow\)\(M\inℤ\)(1)

Ta có: \(N=\frac{10^{2021}+8}{9}\)

    \(\Leftrightarrow M=\frac{100...0+8}{9}\)  ( 2021 số 0 )

    \(\Leftrightarrow M=\frac{100...08}{9}\)   ( 2020 số 0 )

Vì \(1+0+0+...+0+8=9⋮9\)\(\Rightarrow\)\(N\inℤ\)(2)

Từ (1) và (2) \(\Rightarrow\)\(M.N\)là số nguyên 

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

5 tháng 2 2017

\(10^{2016}+2\) = 1000.....0000 ( có 2016 số 0 ) + 2

= 1000....002 có 1 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho - 3

=> \(\frac{10^{2016}+2}{-3}\) là số nguyên

b ) tương tự

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

19 tháng 4 2020

\(A=\frac{10^{2015}+2}{-3}\)

\(A=\frac{10\cdot10\cdot...\cdot10+2}{-3}\)( 2015 số 10 )

\(A=\frac{10....0+2}{-3}\)( 2015 số 0 )

Tổng các chữ số của tử là : 1 + 0 . 2015 + 2 = 1 + 0 + 2 = 3

mà 3 chia hết cho ( -3 )

=> 102015 + 2 chia hết cho ( -3 )

=> \(A=\frac{10^{2015}+2}{-3}\)có giá trị nguyên ( đpcm )

\(B=\frac{10^{2014}+8}{9}\)

\(B=\frac{10\cdot10\cdot...\cdot10+8}{9}\)( 2014 số 10 )

\(B=\frac{10....0+8}{9}\)( 2014 số 0 )

Tổng các chữ số của tử : 1 + 0 . 2014 + 8 = 1 + 0 + 8 = 9

mà 9 chia hết cho 9 => 102014 + 8 chia hết cho 9

=> \(B=\frac{10^{2014}+8}{9}\)có giá trị nguyên ( đpcm )

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

21 tháng 5 2020

ewewdscx