Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)
mà \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=1-\frac{1}{2008}\)<1 (2)
mà 1<3 (3)
từ (1),(2) và (3)=> đpcm
Câu 1:
Gọi \(\left(3n+2;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản.
Bìa 2:
a) \(2xy-5x+2y=148\)
\(\Leftrightarrow x\left(2y-5\right)+2y-5=143\)
\(\Leftrightarrow\left(2y-5\right)\left(x+1\right)=143\)
LÀM NỐT
Câu 8( Mình không viết đè nữa nha)
a) 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100
= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100
= 1 – 1/100 < 1
= 99/100 < 1
Vậy A< 1