Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đụ cha mi
mi trù ta thi rớt HK II mà ta giúp mày hả
mấy bài này cũng dễ ẹt nữa
đừng có mơ ta sẽ giúp mày
ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)
\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)
\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)
\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)
\(B=\frac{100\cdot2}{1\cdot101}\)
\(B=\frac{200}{101}\)
a) \(\left(\frac{11}{4}.\frac{-5}{9}-\frac{4}{9}.\frac{11}{4}\right).\frac{8}{33}\)
=\(\frac{11}{4}\left(-\frac{5}{9}-\frac{4}{9}\right).\frac{8}{33}\)
=\(\frac{11}{4}\cdot-1\cdot\frac{8}{33}\)
=\(-\frac{11}{4}\cdot\frac{8}{33}\)
=\(-\frac{2}{3}\)
b)\(-\frac{1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot-\frac{1}{11}\)
=\(\frac{-1.152}{4.11}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1.152}{11.4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\frac{152}{4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\left(\frac{152}{4}+\frac{68}{4}\right)\)
=\(\frac{-1}{11}\cdot55=-5\)
c)\(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)
=\(-1\cdot\frac{2}{3}\left(\frac{4}{5}+\frac{3}{5}\right)\)
=\(-1\cdot\frac{2}{3}\cdot\frac{7}{5}\)
=\(-\frac{2}{3}\cdot\frac{7}{5}\)
=\(\frac{-14}{15}\)
d) chưa nghĩ ra nhé
e) bạn chép sai đề bài rồi
mk mới kiểm tra 45 phút nên biết
đề bài nè
\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)
=\(\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot\frac{3.5}{4^2}\cdot...\cdot\frac{29.31}{30^2}\)
=\(\frac{1.3.2.4.3.5...29.31}{2.2.3^2.4^2...30.30}\)
=\(\frac{1.2.3^2.4^2.5^2....29^2.30.31}{2.2.3^2.4^2.5^2....29^2.30.30}\)
=\(\frac{1.31}{2.30}\)
=\(\frac{31}{60}\)
a)trong ngoac bn dat thau so chung la 11/4 rui tinh binh thuong b)bn tu lam nhe c)dat thua so chung d)tinh trong ngoac ra rui nhan vs e) mk bo tay
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)\)
A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)
A = \(\frac{1}{2}\)x\(\frac{2}{3}.\)\(\frac{3}{4}....\)\(\frac{2003}{2004}\)
A = \(\frac{1}{2004}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
Câu 8( Mình không viết đè nữa nha)
a) 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100
= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100
= 1 – 1/100 < 1
= 99/100 < 1
Vậy A< 1