K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

17 tháng 12 2019

1 tháng 7 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O′ = AB ∩ CD, M = AI ∩ SO′

Ta có: M = AI ∩ (SCD)

b) IJ // BC ⇒ IJ // AD ⇒ IJ // (SAD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Đường thẳng qua I song song với SD cắt BD tại K.

Do Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên OB < OD. Do đó điểm K thuộc đoạn OD.

Qua K, kẻ đường thẳng song song với AC cắt DA, DC, BA lần lượt tại E, F, P.

Gọi R = IP ∩ SA. Kéo dài PI cắt SO’ tại N

Gọi L = NF ∩ SC

Ta có thiết diện là ngũ giác IREFL.

NV
4 tháng 1 2024

a.

Do M là trung điểm SA, O là trung điểm AC

\(\Rightarrow OM\) là đường trung bình tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\) (1)

N là trung điểm CD, O là trung điểm AC \(\Rightarrow ON\) là đường trung bình ACD

\(\Rightarrow ON||AD\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\) (2)

Mà \(ON\cap OM=O\)  ; \(OM;ON\in\left(OMN\right)\) (3)

(1);(2);(3) \(\Rightarrow\left(OMN\right)||\left(SBC\right)\)

b.

J cách đều AB, CD \(\Rightarrow J\) thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O \(\Rightarrow OI\) là đường trung bình tam giác SBD \(\Rightarrow OI||SB\Rightarrow OI||\left(SAB\right)\)

Hay \(IJ||\left(SAB\right)\)

- Nếu J không trùng O, ta có \(\left\{{}\begin{matrix}IO||SB\left(đtb\right)\Rightarrow IO||\left(SAB\right)\\d||AB\Rightarrow IJ||AB\Rightarrow OJ||\left(SAB\right)\end{matrix}\right.\)

\(\Rightarrow\left(OIJ\right)||\left(SAB\right)\Rightarrow IJ||\left(SAB\right)\)

4 tháng 1 2024

a.

Do M là trung điểm SA, O là trung điểm AC

⇒��OM là đường trung bình tam giác SAC ⇒��∣∣��⇒��∣∣(���)OM∣∣SCOM∣∣(SBC) (1)

N là trung điểm CD, O là trung điểm AC ⇒��ON là đường trung bình ACD

⇒��∣∣��⇒��∣∣��⇒��∣∣(���)ON∣∣ADON∣∣BCON∣∣(SBC) (2)

Mà ��∩��=�ONOM=O  ; ��;��∈(���)OM;ON(OMN) (3)

(1);(2);(3) ⇒(���)∣∣(���)(OMN)∣∣(SBC)

b.

J cách đều AB, CD ⇒�J thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O ⇒��OI là đường trung bình tam giác SBD ⇒��∣∣��⇒��∣∣(���)OI∣∣SBOI∣∣(SAB)

Hay ��∣∣(���)IJ∣∣(SAB)

- Nếu J không trùng O, ta có {��∣∣��(đ��)⇒��∣∣(���)�∣∣��⇒��∣∣��⇒��∣∣(���){IO∣∣SB(đtb)IO∣∣(SAB)d∣∣ABIJ∣∣ABOJ∣∣(SAB)

⇒(���)∣∣(���)⇒��∣∣(���)(OIJ)∣∣(SAB)IJ∣∣(SAB)

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

NV
10 tháng 12 2021

a.

Do O là tâm hbh \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow OJ\) là đường trung bình tam giác SAC

\(\Rightarrow OJ||SA\)

Mà \(SA\in\left(SAC\right)\Rightarrow OJ||\left(SAC\right)\)

\(SA\in\left(SAB\right)\Rightarrow OJ||\left(SAB\right)\)

b. O là trung điểm BD, I là trung điểm BC

\(\Rightarrow OI\) là đườngt rung bình tam giác BCD

\(\Rightarrow OI||CD\)

Mà \(CD\in\left(SCD\right)\Rightarrow OI||\left(SCD\right)\)

Tương tự ta có IJ là đường trung bình tam giác SBC \(\Rightarrow IJ||SB\Rightarrow IJ||\left(SBD\right)\)

c. Ta có I là trung điểm BC, O là trung điểm AC

\(\Rightarrow M\) là trọng tâm tam giác ABC

\(\Rightarrow BM=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\) 

\(\Rightarrow\dfrac{BM}{BD}=\dfrac{1}{3}\)

Theo giả thiết \(SK=\dfrac{1}{2}KD=\dfrac{1}{2}\left(SD-SK\right)\Rightarrow SK=\dfrac{1}{3}SD\)

\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}=\dfrac{BM}{BD}\Rightarrow KM||SB\) (Talet đảo)

\(\Rightarrow MK||\left(SBC\right)\)

NV
10 tháng 12 2021

undefined

27 tháng 8 2021

ai giúp em với ạ :(

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

 

\(\Delta SAB,\Delta SAC\) đều \( \Rightarrow AB = {\rm{A}}C = a\)

\(BC = \sqrt {S{B^2} + S{C^2}}  = a\sqrt 2 \)

\( \Rightarrow \Delta ABC\) vuông cân tại \(A\)

\(AJ\) là trung tuyến của tam giác \(ABC\)\( \Rightarrow AJ = \frac{1}{2}BC = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBC\) vuông cân tại \(S\) có \(SJ\) là trung tuyến

\( \Rightarrow SJ = \frac{1}{2}BC = \frac{{a\sqrt 2 }}{2}\)

\(IJ\) là trung tuyến của tam giác \(SAJ\)\( \Rightarrow IJ = \frac{{\sqrt {2\left( {A{J^2} + S{J^2}} \right) - S{A^2}} }}{2} = \frac{a}{2}\)

\(AI = \frac{1}{2}SA = \frac{a}{2};BJ = \frac{1}{2}BC = \frac{a}{2}\)

Xét tam giác \(AIJ\) có: \(A{I^2} + I{J^2} = A{J^2}\)

\( \Rightarrow \Delta AIJ\) vuông tại \(I\)\( \Rightarrow AI \bot IJ \Rightarrow SA \bot IJ\)

\(\Delta SAB\) đều \( \Rightarrow BI = \sqrt {A{B^2} - A{I^2}}  = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác \(BIJ\) có: \(B{J^2} + I{J^2} = B{I^2}\)

\( \Rightarrow \Delta BIJ\) vuông tại \(J\)\( \Rightarrow BJ \bot IJ \Rightarrow BC \bot IJ\)