K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O′ = AB ∩ CD, M = AI ∩ SO′

Ta có: M = AI ∩ (SCD)

b) IJ // BC ⇒ IJ // AD ⇒ IJ // (SAD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Đường thẳng qua I song song với SD cắt BD tại K.

Do Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên OB < OD. Do đó điểm K thuộc đoạn OD.

Qua K, kẻ đường thẳng song song với AC cắt DA, DC, BA lần lượt tại E, F, P.

Gọi R = IP ∩ SA. Kéo dài PI cắt SO’ tại N

Gọi L = NF ∩ SC

Ta có thiết diện là ngũ giác IREFL.

31 tháng 3 2017

(α) // AB, AB ⊂ (ABCD), O là điểm chung của (α) và (ABCD)

=> ( α) ∩ (ABCD) = MN qua O và song song với AB. Các giao tuyến khác tương tự, thiết diện là hình thang MNPQ.

NV
25 tháng 12 2020

Kéo dài AB và CD cắt nhau tại E

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

Qua M kẻ đường thẳng d song song CD lần lượt cắt AC và AD tại F và G

Trong mp (SAC), qua F kẻ đường thẳng song song SA cắt SC tại P

Trong mp (SAD), qua G kẻ đường thẳng song song SA cắt SD tại Q

\(\Rightarrow\) Hình thang MPQG là thiết diện của (P) và chóp

13 tháng 8 2021

undefined

9 tháng 11 2023

a) Ta có:
- M là trung điểm của AB, nên M là trung điểm của đoạn thẳng AB.
- P là trung điểm của SC, nên P là trung điểm của đoạn thẳng SC.
- I là trung điểm của SB, nên I là trung điểm của đoạn thẳng SB.

Vì M, P, I lần lượt là trung điểm của các đoạn thẳng AB, SC, SB, nên ta có:
2AM = AB, 2CP = CS, 2BI = BS.

Giả sử BC không song song với MP. Khi đó, ta có:
- MP cắt BC tại H.
- MP cắt SA tại K.
- MP cắt QN tại L.

Theo định lý , ta có:
AH/HC = AK/KS = AL/LQ.

Từ đó, ta có:
2AM/2CP = AK/KS = AL/LQ.

Tuy nhiên, ta đã biết rằng 2AM/2CP = AB/CS = BS/CS = BI/CS = 2BI/2CP.

Vậy ta có:
2BI/2CP = AK/KS = AL/LQ.

Do đó, ta có AK = AL và KS = LQ.

Từ đó, ta suy ra K = L và Sẽ có MP song song với BC.

Vậy BC // (IMP).

b) Thiết diện của mặt phẳng (α) với hình chóp là một hình tam giác. Để xác định hình tam giác này, cần biết thêm thông tin về góc giữa mặt phẳng (α) và mặt phẳng đáy ABC.

c) Đường thẳng CN và mặt phẳng (SMQ) giao nhau tại một điểm. Để tìm giao điểm này, cần biết thêm thông tin về góc giữa đường thẳng CN và mặt phẳng (SMQ).

--thodagbun--

(Bn tham khảo cách lm đy nhe )

11 tháng 12 2023

a: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

b: Xét ΔSAB có

M,N lần lượt là trung điểm của AS,AB

=>MN là đường trung bình của ΔSAB

=>MN//SB

Ta có: MN//SB

SB\(\subset\)(SBC)

MN ko nằm trong mp(SBC)

Do đó: MN//(SBC)

3 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ Ta có: (α) // AB

⇒ giao tuyến (α) và (ABCD) là đường thẳng qua O và song song với AB.

Qua O kẻ MN // AB (M ∈ BC, N ∈ AD)

⇒ (α) ∩ (ABCD) = MN.

+ (α) // SC

⇒ giao tuyến của (α) và (SBC) là đường thẳng qua M và song song với SC.

Kẻ MQ // SC (Q ∈ SB).

+ (α) // AB

⇒ giao tuyến của (α) và (SAB) là đường thẳng qua Q và song song với AB.

Từ Q kẻ QP // AB (P ∈ SA).

⇒ (α) ∩ (SAD) = PN.

Vậy thiết diện của hình chóp cắt bởi (α) là tứ giác MNPQ.

Ta có: PQ// AB và NM // AB

=> PQ // NM

Do đó, tứ giác MNPQ là hình thang.