K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

a: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SBA) giao (SCD)=xy, xy đi qua S và xy//AB//CD

b: Xét ΔSAC có

I,O lần lượt là trung điểm của AS,AC

=>IO là đường trung bình của ΔSAC

=>IO//SC

=>IK//SC

Ta có: IK//SC

SC\(\subset\)(SBC)

IK không nằm trong mp(SBC)

Do đó: IK//(SBC)

NV
9 tháng 7 2021

Trong mp (ABCD), nối MN kéo dài lần lượt cắt AB và AD kéo dài tại E và F

Trong mp (SAB), nối PE cắt SA tại G \(\Rightarrow PG=\left(MNP\right)\cap\left(SAB\right)\)

Trong mp (SAD), nối PF cắt SD tại H \(\Rightarrow PH=\left(MNP\right)\cap\left(SAD\right)\)

\(NH=\left(MNP\right)\cap\left(SCD\right)\)

\(GM=\left(MNP\right)\cap\left(SBC\right)\)

13 tháng 8 2021

Sao biết PE cắt SA

NV
30 tháng 12 2021

Gọi E là giao điểm AB và CD

\(\Rightarrow E=\left(SAB\right)\cap\left(SCD\right)\)

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

b.

Do M là trung điểm SC, N là trung điểm BC

\(\Rightarrow MN\) là đường trung bình tam giác SBC

\(\Rightarrow MN||SB\)

Mà \(SB\in\left(SBD\right)\Rightarrow MN||\left(SBD\right)\)

c.

Trong mp (ABCD), nối AN cắt CD kéo dài tại F

Trong mp (SCD), nối FM kéo dài cắt SD tại G

\(\Rightarrow G=SD\cap\left(AMN\right)\)

NV
30 tháng 12 2021

undefined

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

NV
25 tháng 12 2020

Kéo dài AB và CD cắt nhau tại E

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

Qua M kẻ đường thẳng d song song CD lần lượt cắt AC và AD tại F và G

Trong mp (SAC), qua F kẻ đường thẳng song song SA cắt SC tại P

Trong mp (SAD), qua G kẻ đường thẳng song song SA cắt SD tại Q

\(\Rightarrow\) Hình thang MPQG là thiết diện của (P) và chóp

2 tháng 2 2017