Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a b c d k n m
xét tam giác AMB đồng dạng với KMD ( góc góc ) cái này dễ bạn tự chứng minh được
suy ra \(\frac{MB}{MD}=\frac{AM}{KM}\) ( TÍCH CHẤT TAM GIÁC ĐỒNG DẠNG)
xét tam giác BMN động dạng với DMA ( góc góc )
suy ra \(\frac{BM}{DM}=\frac{NM}{MA}\) ĐIỀU CẦN PHẢI CHỨNG MINH
b) bạn xem lại câu 1 câu 2 rồi suy ra
từ 1 và 2 ta có
\(\frac{AM}{MK}=\frac{MN}{MA}=AM^2=MN.MK\) nhân chéo nó lên
A B C D O M N E K H
1) Ta có: ^MOB + ^BON = ^MON =900; ^NOC + ^BON = ^BOC = 900
=> ^MOB = ^NOC.
Xét \(\Delta\)OMB và \(\Delta\)ONC: ^MOB = ^NOC (cmt); OB=OC; ^OBM = ^OCN (=450)
=> \(\Delta\)OMB=\(\Delta\)ONC (g.c.g) => OM=ON (2 cạnh tương ứng)
Xét \(\Delta\)MON có: ^MON=900; OM=ON => \(\Delta\)MON vuông cân tại O (đpcm).
2) Ta có: \(\Delta\)OMB=\(\Delta\)ONC (cmt) => BM=CN => AB-BM=BC-CN => AM=BN
Suy ra \(\frac{AM}{BM}=\frac{BN}{CN}\). Mà \(\frac{BN}{CN}=\frac{AN}{EN}\)(Hệ quả ĐL Thales)
Nên \(\frac{AM}{BM}=\frac{AN}{EN}\)=> MN // BE (ĐL Thales đảo) (đpcm).
3) Do MN // BE (cmt) nên ^MNO = ^BKO = 450 (2 góc đồng vị).
Mà ^BCO = 450 => ^BKO = ^BCO =450 hay ^BKN = ^OCN => \(\Delta\)BNK ~ \(\Delta\)ONC (g.g)
\(\Rightarrow\frac{BN}{ON}=\frac{KN}{CN}\)hay \(\frac{BN}{KN}=\frac{ON}{CN}\)=> \(\Delta\)BON ~ \(\Delta\)KCN (c.g.c)
=> ^OBN = ^CKN => ^CKN=450 (Vì ^OBN=450)
Vậy ^BKC = ^BKO + ^CKN = 450+450 = 900 => CK vuông góc BE (đpcm).
4) KH // OM, OM vuông góc OK => KH vuông góc OK. Hay KH vuông góc NK
=> ^CKH = ^NKH - ^CKN = 900 - 450 =450 => KC là phân giác ^NKH
Suy ra \(\frac{KN}{KH}=\frac{CN}{CH}=\frac{BN}{BH}\)(ĐL đường phân giác trong tam giác) (1)
Dễ thấy KN là phân giác trong \(\Delta\)BKC => \(\frac{KC}{KB}=\frac{CN}{BN}=\frac{CH}{BH}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}=\frac{BN+CH}{BH}\Leftrightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BN+CH+CN}{BH}\)
\(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BH}{BH}=1\)(đpcm).
BN = 2 NC và BN + NC = BC \(\Rightarrow BN=\frac{2}{3}BC\Rightarrow\frac{BN}{BC}=\frac{2}{3}\)
ABCD là hình bình hành (gt) nên AB // CD và AD // BC (định nghĩa)
\(\Delta MBN\) có AD // BN \(\Rightarrow\frac{MN}{MA}=\frac{BN}{AD}=\frac{BM}{MD}\) (hệ quả định lí Ta-lét)
\(\Rightarrow\frac{MN}{MA}=\frac{2}{3}\)
b, \(\frac{MN}{MA}=\frac{MB}{MD}=\frac{MA}{MK}\Rightarrow MA^2=MN.MK\)