K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1) Ta có: ^MOB + ^BON = ^MON =900; ^NOC + ^BON = ^BOC = 900
=> ^MOB = ^NOC.
Xét \(\Delta\)OMB và \(\Delta\)ONC: ^MOB = ^NOC (cmt); OB=OC; ^OBM = ^OCN (=450)
=> \(\Delta\)OMB=\(\Delta\)ONC (g.c.g) => OM=ON (2 cạnh tương ứng)
Xét \(\Delta\)MON có: ^MON=900; OM=ON => \(\Delta\)MON vuông cân tại O (đpcm).
2) Ta có: \(\Delta\)OMB=\(\Delta\)ONC (cmt) => BM=CN => AB-BM=BC-CN => AM=BN
Suy ra \(\frac{AM}{BM}=\frac{BN}{CN}\). Mà \(\frac{BN}{CN}=\frac{AN}{EN}\)(Hệ quả ĐL Thales)
Nên \(\frac{AM}{BM}=\frac{AN}{EN}\)=> MN // BE (ĐL Thales đảo) (đpcm).
3) Do MN // BE (cmt) nên ^MNO = ^BKO = 450 (2 góc đồng vị).
Mà ^BCO = 450 => ^BKO = ^BCO =450 hay ^BKN = ^OCN => \(\Delta\)BNK ~ \(\Delta\)ONC (g.g)
\(\Rightarrow\frac{BN}{ON}=\frac{KN}{CN}\)hay \(\frac{BN}{KN}=\frac{ON}{CN}\)=> \(\Delta\)BON ~ \(\Delta\)KCN (c.g.c)
=> ^OBN = ^CKN => ^CKN=450 (Vì ^OBN=450)
Vậy ^BKC = ^BKO + ^CKN = 450+450 = 900 => CK vuông góc BE (đpcm).
4) KH // OM, OM vuông góc OK => KH vuông góc OK. Hay KH vuông góc NK
=> ^CKH = ^NKH - ^CKN = 900 - 450 =450 => KC là phân giác ^NKH
Suy ra \(\frac{KN}{KH}=\frac{CN}{CH}=\frac{BN}{BH}\)(ĐL đường phân giác trong tam giác) (1)
Dễ thấy KN là phân giác trong \(\Delta\)BKC => \(\frac{KC}{KB}=\frac{CN}{BN}=\frac{CH}{BH}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}=\frac{BN+CH}{BH}\Leftrightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BN+CH+CN}{BH}\)
\(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BH}{BH}=1\)(đpcm).